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Real-time computers are designed to control or monitor real-world processes. These

processes almost always involve other equipment, such as milling machines or semiconduc-
tor furnaces, and large numbers of sensors and activators. A real-lime computer musl keep
up with the equipment around it. lt must respond to interrupts quickly, it must transfer large
amounts of data rapidly, and it must perform any necessary computations and data transfers
etficiently, so that it is never overwhelmed by requests for its services. lt must also be
reliable, since a large amount of expensive material and equipmenl may depend on it.

Hewlett-Packard's premier real-time computer family is the HP 1000 product line. In this
issue you'll read about the new HP 1000 A-Series Computers, the highest-performance and most reliable
HP 1000s developed so far, and about RTE-A, the latest version of the HP 1000's Real-Time Executive
operating system. A-Series computers range in performance from the A600's one million instructions per
second to the A900's three MIPS. To keep costs lower while achieving these high performance levels, the
designers of the A-Series didn't go to a fast but expensive logic family like ECL (emitter coupled logic),
choosing instead to rely on advanced architectures, special hardware, and clever ways to save microcycles.
In the A900, they've provided a pipelined data path, a cache memory, and three special chips that add,
multiply, and divide floating-point numbers. On this month's cover are the five boards of the 4900 processor.
The data path board (with the large square floating-point lC packages) and the cache memory board are in
the foreground. ln the background are the memory controller board, the sequencer board, and the memory
board with its gold-covered RAMs. Under the boards is a color print of the mask set of the floating-point divide
chip.

In designing microprogrammed processors like those in the A-Series and other microcomputer-based
systems, logic analyzers and logic development systems are invaluable. Last March, we published a series
of articles about the HP 64000 Logic Development System. One of its subsystems, the HP 646005 Logic
Timing/Hardware Analyzer, has just been upgraded with some new software that gives the designer several
sophisticated new ways to process and analyze timing data collected from a system under development. The
story begins on page 32.

-R. P. Dolan
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A New Series of High-Performance
Real-Time Gomputers
The HP 1000 A-Series consists of three compatible
processors rated atupto3 M|PS.They use anew Real-Time
Executive operating sysfem and are available in board, box,
and sysfe m configurations.

by Marlu E. Allan, Nancy Schoendorf, Craig B. Chatterton, and Don M. Cross

I{E NEW HP 1000 A-SERIES family of computers is
designed to provide solutions to specific real-time
needs in manufacturing, automation, and other per-

formance-critical environments. Implemented with state-
of-the-art technology, the new computers offer major new
capabilities to meet the challenging demands of OEMs, end
users, and system designers.

The family consists of three compatible processors, the
A600, .\700, and A900. Each processor uses the new RTE-A
operating system (RTE stands for Real-Time Executive),
and identical compilers and subsystem products. Each
computer employs the distributed-intelligence HP 1000
L-Series I/O system, which uses an I/O processor on each
VO card.

Available in board, box, and system configurations (see
Fig. 1 and Table I), these processors offer configuration
flexibility for OEMs and end users across a wide spectrum
of applications. Ranging in performance from 1 to 3 million
instructions per second, the A-Series family of computers
offers very high performance at economical prices.

The A600 Processor
The A600 processor is the lowest-price member of the

A-Series product line. Based on the 2901 microprocessor,
the two-board CPU supports 128K bytes of memory, ex-
pandable to 4 megabytes. This processor combines micro-
programmed instruction execution with hardware assist to
achieve 1-million-operations-per-second performance. The
4'600 comes as a rack-mount computer and in numerous
system configurations. It is best suited for dedicated appli
cations, such as numerical control, energy management,
and automated testing.

The A700 Processor
The .\700 processor complements the ,{,600 processor

with additional capabilities. For computation-intensive
applications, the A700 can be configured with an optional
hardware floating-point processor or customized by user
microprogramming. Optional error correcting (ECC) mem-
ory allows memory expansion to 2 megabytes in 512K-byte
increments. Alternatively, the A.700 canbe configured with
parity memory up to 4 megabytes in l-megabyte incre-
ments. The ,{,700 processor is available in a four-board
processor configuration in addition to rack-mount and sys-
tem offerings.

The A900 Processor
The .\900 processor is the highest-performance member

of the A-Series product line. Using a 4K-byte cache mem-
ory, a pipelined data path, standard hardware floating-
point chips, and microcoded scientific and vector instruc-
tion sets, the .{,900 can perform more than 3 million oper-
ations per second. Error correcting memory is standard in
768K-byte increments for a total memory capacity of 6
megabytes, A user-microprogramming package is available.
The ,4'900 is offered in rack-mount or system configura-
tions.

RTE-A Operating System
RTE-A is the real-time operating system for all three pro-

cessors in the IIP 1000 A-Series family. RTE-A evolved
from previous members of the RTE family and is a product
of some proven real-time features from past versions and
some entirely new features. The main goals of the new
features in RTE-A are to provide multiuser tools and to
support large programs with large amounts of data. RTE-A

Table I
HP 1000 A-Series Computerg

System

Box
Board
Operating system
Stmdardmemory
Optionalmemory
Memory: Standard

Maximum
Memorycycletime
Hardware f loating-point
Operations/second

Base instruction set
Floating-point

Direct memory access
rate

User microprogramming
FORTRANTT
Pascal/1ooo
BASIC/1OOOC
Graphics/1000-II

DGL&AGP
DSN/Distributed System

*With hardware f loating-point.

A900 A700 A600
2199C/D, 2797C/D, 2196C/D,
2439 2437 2436
21394 27374 21364

2107AK 2106AK
RTE.A RTE-A RTE.A
ECC Parity Puity

ECC
768Kbytes 256Kb]'tes 128Kbytes
6Mbytes 4Mbytes 4Mbytes
181 ns (eff) 500 ns 454 ns
Standud Optional

3,000,000 1,000,000 1,000,000
500,000 204,000* 53,000

3.7Mbytes/s 4Mbytes/s 4.27Mbytes/s
Yes Yes No
Yes Yes Yes
Yes Yes Yes
Yes Yes Yes

Yes
Yes

Yes
Yes

Yes
Yes

FEBRUARY 1 984 HEWLETT-PACKARD JoURNAL 3



l

.::,:i ti,:aat.::rr:

is implemented in a modular fashion so that one operating
system can span the size and performance ranges of the
entire A-Series. It is a configurable operating system and
can be tailored by the user to fit any particular application.

A major enhancement in RTE-A is the multiuser environ-
ment. A modern hierarchical file system allows logical
grouping of files and protection of files. It also includes
time stamping of files on creation, last access, and last
update. This time stamping information is used to provide

an incremental backup capability for the system. Another
important feature of the enhanced file system is transparent
access to files on other RTE nodes in a distributed system.
This enhanced file system is used as a base for a multiuser
environment. Logon and logoff utilities provide identifica-
tion of users and their capabilities. This identification is
used in conjunction with the protection mechanisms in
the file system to identify and protect files belonging to
individual users. The multiuser environment is completed
with a command interpreter that has on-line help facilities
and an outspooling utility for programmatic and interactive
outspooling of files to devices or files.

RTE-A has a number of features to support large programs

and large amounts of data. Virtual memory for data is a
scheme that allows users to access data in main memory
and on disc as if it were all in main memory. EMA (extended

memory area) is a special case of virtual memory for data.
It provides faster access to data by allowing up to 2 mega-
bytes of data in main memory. An EMA can be shared by
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Fig. 1. HP 1000 A-Series Com-
puters come in various configura-
tions and have performance rat-
ings ranging from 1 to 3 million
instructions Der second.

multiple programs.
RTE-A takes advantage of new hardware features in the

A-Series to provide separation of code and data for user
programs. This allows transparent support of large pro-
grams (up to 7.75 megabytes of code) using a demand seg-
ment virtual memory scheme. It also allows multiple copies
of the same program to share code.

A-Series Performance
The A-series Computers were designed with excellent

price/performance as an important goal. Their performance
has been verified in benchmarks run against their predeces-
sors and other currently competitive products.

Before discussing specific results, let's review how per-
formance is typically measured. Computers are expected
to perform a variety of tasks, from program development,
to controlling and monitoring a milling machine, to assist-
ing engineers in complex designs. In terms of performance,
what's important to the people using these computers?

Some of the things often required are:
r Good throughput, or how much work can be done in a

given amount of time. This may vary depending on what
type of task is performed, e.g., floating-point computa-
tions, compiling programs, etc.

I Good response, or how fast the computer can respond
to a certain input, such as an interrupt or a DMA transfer.
An interrupt might be a terminal keyboard input, a sensor
indicating a malfunction in a process, a satellite sending



data, etc.
r Good utilization, or how effectively the resources are

being used. If only part of the machine is used a signifi-
cant amount of time, then the user may be paying for
something unnecessary.
A-Series Computers are often used in real-time applica-

tions, where the computer must keep up with the equip-
ment around it. Such environments require good perfor-
mance in integer and floating-point operations, good inter-
rupt response time and I/O transfer rates, and the ability
to handle large amounts of data efficiently.

Benchmarks are standard programs used to compare the
performance of one computer with that of another. One
should be careful when selecting benchmarks to measure
performance. Sometimes a particular benchmark may be
biased in terms of what it's measuring, or may exploit a
particular aspect of the computer that's not used much.
The best benchmark is the application intended, but this
is not always practical. The benchmarks discussed here
are a small sample of the ones that have been run on the
A-Series. The F-Series included in the results was previ-
ously the high-end HP 1000.1

The Whetstone benchmarks are industry standards that
were written by the National Physical Laboratory of Eng-
land. The programs are written in FORTRAN, and attempt
to represent average program mixes. The two most common
are the single- and double-precision Whetstones. These
measure performance, including floating-point, in single
and double precision, respectively (32-bit and 6+-bit float-
ing-point numbers). The performance results are shown in
Table II, which indicates the execution times both in min-
utes and normalized relative to the r\900. These times were
measured on a quiescent system and are elapsed times.
Note that the l\700, A900, and F-series times include float-
ing-point hardware while the ,4,600 does floating-point op-
erations in microcode. These benchmarks are often expres-
sed in terms of "Whetstones per second." The execution
times are for 10 million Whetstone instructions, so dividing
this number by the execution times yields the column
labeled KWIPS (thousands of Whetstones per second). The
,4,900 KWIPS figures are better than those of many 32-bit
"super minicomputers," even though the A900 is primarily
a 16-bit computer.

In applications making little use of floating-point opera-
tions, integer performance is more important. A FORTRAN
benchmark was developed to measure integer performance,
and the results are shown in Table III. Here, single (16-bit)
and double (32-bit) integer operations were measured. Nor-
malized times are shown, referenced to the ,\900, Also. a
MIPS figure is included, which is the number of millions
of instructions executed per second. These figures are less
than the base set instruction rates, since more complex
instructions are required. In this example, the ,\900 does
very well because of its optimized data paths and good
32-bit capabilities.

Many applications require the use of discs for storage
and retrieval of data. Since discs are typically slower than
the CPU, their effect must be taken into account. One such
application is compiling programs. The A-Series supports
a variety of compilers including a macroassembler, FOR-
TRAN, and Pascal. While the speeds of these vary, the
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Fig.2. Pascal compilation speeds for the HP 1000 A, E, and
F-Serles Computers.

relative performance is consistent. Compilation speeds for
the Pascal compiler are shown in Fig. 2. These are in lines
per minute and are measured in a quiescent system with
a working set varying up to 270 pages (1024 words/page)
using an HP 7925 Disc Drive. On the A900, only about 60%
of the processor is used during a Pascal compilation. The
remaining 40% is available for other activities.

The Pascal compiler is a VMA program, using the VMA
(virtual memory area) capabilities of HP 1000 Computers.
VMA allows a program to access up to 7.75M bytes of data,
even though much of it may be on disc. The working set
size is the amount of the data that can be in memory. The
performance range is less here, since all of the A-series
Computers use the same I/O system, and the disc time is
now part of the execution time.

Interrupt response time is generally a good measure of
how quickly a processor can respond to an external event.
The data in Table IV is the elapsed time in microseconds
from an interrupt until the system enters the appropriate
driver. A driver is the piece of system software that com-
municates with a particular device or set of devices. Before
entering the driver, the system must save certain state in-
formation and determine the appropriate action. Interrupt
response time thus measures the operating system's perfor-
mance as much as it measures the CPU's.

Even though the VO systems are the same, much of the
time is spent executing other instructions, and this results
in the 3-to-1 range. An interrupt response time of 150 prs
is very good for a system with the functionality of RTE-A.

In selecting the right processor for a particular applica-
tion, the type of performance necessary must be evaluated.
The A-Series offers a range of CPU speeds from the A600
at 1 MIPS to the A900 at 3 MIPS. While the actual instruc-
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Table ll
Whststone Performance

(fimes are in mlnutgs rounded to two declmal places)

A9o0 A7(x) A6tX)
tlme(rel)KWIPS

SinglePrecision .12(7)1344 .31(2.6)541 .87(7.3)rS2
DoublePrecision .2O(7)821 .47(2.4)355 1.6(8.0)105

If components are operated at too high a temperature,
even the most carefully designed circuit cannot deliver
good long-term reliability. To ensure that each component
would be operating well within its limits, thermocouples
were used to look for potential hot spots that required
additional cooling. The thermocouple data was used to
calculate the junction temperature of each of the integrated
circuits to ensure that no device was being overstressed.

As part of the development cycle, a number of typical
A-Series system configurations were subjected to rigorous
environmental tests designed to verify the integrity of the
packaging, power supply, and processor electronics. Proper
system operation was verified over a wide range of temper-
ature, power line voltage and frequency, humidity, altitude,
and vibration.

Care is also exercised during the manufacturing process
to keep components from being damaged by electrostatic
discharge (ESD). Often, a component will not be destroyed
by ESD, but merely weakened, enabling it to pass produc-
tion tests at the factory only to fail after a very few hours
at the customer's site. To prevent this problem, we have
implemented an extensive program to eliminate ESD dam-
age to components during the manufacturing and testing
process. The program includes antistatic mats, grounding
straps for the workers, and antistatic conductive packaging
for the transporting assemblies.

Mean time between failures (MTBF) calculations using
RADC II methods predict the following MTBFs for the A-
Series CPUs:

A600 (2156A) with 128K bytes of memory 10400 hours
ATOO (2737AJ with 128K bytes of memory 74O0 hours
,4'900 (2139A) with 768K bytes of

ECC memory 6100 hours

To date, field data on the 2156A and 2137A indicates
that their MTBFs are actually 2 to 2.5 times better than the
RADC prediction. At the time of this writing, the 21394
is too new and not enough field data is available on that
product, but since it was designed using the same
methodology and attention to detail that went into the
21564 and 2137A, there is every reason to believe that it
too will give the high level of reliability that is expected
from HP products.
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F-serles

.37 (3.1)  450

.68 (3.4) 245

Table lll
lntog€r Performance

(Tim$ are rslatlve to A90O)

rime(illPS)
Singlelnteger 1.0 (2.3) 3.6 (.65) 3.8 (.61) 4.6 (.50)
Double Integer 1.0 (1.9) 3.9 (.48) 4.2(.44) 5.3 (.35)

Table lV
Interrupt Response Tlme

(Iimes arc in mlcros€conds)

fnterrupttoDriver 57 742 146

tion execution rate will vary depending on the instruction
mix, the range remains fairly consistent in many applica-
tions. Floating-point allows the A700 and A900 to excel,
while heavier disc access compresses the range somewhat.

Rellablllty
HP customers have come to expect something extra in

terms of reliability from IIP products and the A-Series was
designed with that in mind. Reliability, like quality, must
be designed in. It cannot be added on later. One key to a
reliable product is design margin, the attribute that enables
a product to function properly over a wide range of environ-
mental conditions and component variations.

To ensure sufficient design margin, a worst-case analysis
was performed on each critical timing path in the A-Series
CPUs. The A600 analysis was performed by hand while
the ,{,700 and A9o0 analyses were done using an IIP-de-
veloped software package, which takes into account such
parameters as power supply variation, output loading, tem-
perature variation, and stripline characteristics of printed
circuit boards to predict the operating margin of a digital
circuit.

Before being made into a printed circuit board, each mod-
ule of each of the A-Series Computers was analyzed by a
group of engineers in a peer group design review. Each
engineer in the review group was assigned the task of learn-
ing a portion of the module well enough to explain its
detailed operation to the rest of the group. These review
meetings have proved to be a very effective method of
catching design errors early in a project.

After the printed circuit layout for each module was
completed and digitized, the digitizer output was read by
another HP-generated software package, which produced
a list of all of the wires and connections on the board. The
list was then checked against the schematic for the module
as one final verification before boards were fabricated.
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An Adaptable 1 -MIPS Real-Time Gomputer
by David A. Fotland, Lee S. Moncton, and Leslie E. Neft

HE ,{'700 COMPUTER is the midrange processor of
the A-Series Computer family. Priced between the
,{600 and the 4900, the ,{700 provides flexibility

that allows it to adapt to a customer's needs. The A700 can
be purchased with or without hardware floating-point and
with or without error correcting memory, and it can be
customized through user microprogramming. It is designed
to operate on the earlier HP 1000 L-Series backplane and
thus it can use the dozens of VO cards that have been
developed since the advent of the L-Series.

The ,4,700 was the first member of the A-Series product
line, and its inherent flexibility made it the development
processor of that product line. The first objective of the
,4'700 was to overcome the address space limitation of the
L-Series, while surpassing L-Series performance by a factor
of 3. Another objective was to leverage the hundreds of
engineer-years of effort found in the RTE family of operat-
ing systems, languages, and subsystems. The ,\700 was
intended to provide all of the functionality of the HP 1000
E-Series and F-Series Computers, including similar perfor-
mance and microprogrammability, at lower cost, using the
improved L-Series VO system and an improved method for
supporting large programs.

The 4'700 was the first HP 1000 to make use of bit-slice
technology, the first to incorporate the high-performance
SOS floating-point chip set (see page 17), the first to imple-
ment the dynamic mapping system for large address space
access, the pioneer and the development processor for
large-program support provided by code and data separa-
tion hardware and the VC+ enhancement to the RTE-A
operating system (see page 26), and the first HP 1000 to be
easily user-microprogrammable through the use of the mi-
croparaphraser microprogramming language. The A700
with hardware floating-point has better performance than
the HP 1000 F-Series, formerly the top of the line, at only
sixty percent of the cost.

New DMS lnstructions
Since the L-Series did not have memory mapping, the

A700 was free to define a new improved set of dynamic
mapping system instructions. The HP 1000 uses 1s-bit log-
ical addresses, so a program can directly address 32K
words. A map is a set of 32 map registers which map the
32 1K-word pages of logical address space to 32 physical
pages. For backward compatibility with the HP 1000 M, E,
and F-Series Computers, the A-Series has a similar format
for a set of map registers. The number of map sets is in-
creased from 4 to 32 for more flexibility and the physical
page number field is extended to allow 2+-bit physical
addresses. This allows the operating system to allocate one
DMS map to each VO interface for increased I/O throughput.
In addition, the operating system can use a separate DMS
map for system available memory. The user program can
be allocated two maps, one for code and one for data.

The DMS instruction set includes instructions for load-
ing and storing maps and a new set of cross-map instruc-
tions that allow access to memory through three maps, the
current execute map and two others called datal and data2.
The cross-map instructions include load, store, and move
words.

CDS Instructions
The biggest architectural change was the introduction of

code and data separation. Separation of code and data al-
lows programs with large code to be handled easily and
transparently without using overlays. It also provides better
protection, recursion, and reentrancy. It allows code to be
shared between several processes to conserve main mem-
ory. CDS was recognized early as being a desirable goal.
The problem was to provide it without a major change in
the existing instruction set, which would require a lot of
extra hardware. The old instruction set is faithfully exe-
cuted for backward compatibility. Minimal changes from
the old instruction set also mean minimal changes to the
existing compilers.

ECC Memory
No matter how good the design or how reliable the parts

used, machines will fail from time to time. The single part
in the ,\700 that contributes most to the failure rate is the
dynamic RAM chip used in the memory. This is because
these parts have a high soft failure rate compared to other
logic parts and because there are many more RAM chips
in the machine than any other kind of chip. An A700 with
4M bytes of memory contains 544 64K-bit dynamic RAM
chips.

Emor correcting memory provides higher reliability for
those customers who need it by correcting single-bit errors
and detecting double-bit errors. Soft errors are the most
common failure of memory systems. In systems with over
512K bytes of memory the soft error rate is about one per
year. Customers who need higher reliability than this can
use error correcting memory.

Error correcting memory is easy to use on the ,{700 be-
cause it uses the same memory controller and has the same
performance as parity memory. A customer can upgrade
to emor correction without throwing out the current con-
troller. Error correcting and parity memory can be mixed
in the same system. For example, one might want to protect
the operating system and some critical applications from
single-bit errors, and use less-expensive parity memory for
the rest of the system.

If there are no errors, the error correcting memory runs
at the same speed as parity memory. When a single-bit
error is detected, the system is frozen for 200 ns while the
data is corrected, and is then allowed to continue with
good data.

A Hamming code is used to detect and correct memory

FEBRUARy 1984 HEWLETT-pAcxnRo lounter- 7
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errors in the 4700. With the addition of 6 bits per 16-bit
word all single-bit errors are correctable and all double-bit
errors are detectable. Whenever the memory is read the
parity bits are combined with the data to provide a 6-bit
syndrome, which identifies the type of error and the bit
number if it is a single-bit error. This syndrome is stored
in an error logging RAM in the memory controller. There
is one syndrome location in the RAM for each row of 64K
RAM chips. By reading the error logging RAM, it is possible
to determine the last chip that had an error in each row of
RAMs. This information can be used to identify failed chips
before they cause a problem in the system.

Mlcroinstruction

lmmediate oala (rMr)

M n e m o n i c s i n (  ) a r e
register names uged in
paraphlaser programming
micr@rder5.

Backplane

Y-Bus to
Exlemal

EXB-Bue
trom Enehal

R€giste6
(sFl{)

Register
Index (N)

".^l.?'ill[tlffi ;?'#"'"o
Fig. '1. Block diagram of the A700 processor. Ihe regularity of data flow makes microprogram-

mtng easter.

Performance and Ease of Microprogramming
The two major objectives in the design of the Az00 mi-

cromachine were to provide fast execution of the HP 1000
instruction set, and to allow user microprogramming,
which can give a substantial boost in performance to many
customer applications. To accomplish these objectives, we
designed an architecture that is simple and straightforward,
a microinstruction set that is flexible and provides a lot of
capability, and tools that aid microcode development.

We chose to base the micromachine on the 2900 bit-slice
processor family, specifically the 2903 bit-slice processor
and the 2911 bit-slice sequencer. These parts provide many
intrinsic features, yet allow us to use our own microar-
chitecture. We use the 2903's numerous arithmetic and
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logical operations, but use our own instruction set for ac-
cessing them.

The Mlcroarchitecture
The key features of the microarchitecture are capability

and regularity. The capability allows fast performance; the
regularity makes it easy to microprogram.

To optimize performance for the r\700 instruction set,
we used profile data which told us how often each instruc-
tion or class of instructions was executed for different types
of programs. For those instructions executed most often,
we provide special hardware to shorten their execution
times. We avoided the common pitfall of making other
instructions inordinately slow to optimize the most heavily
used instructions. Even an instruction that occurs only 7o/o
of the time can impact performance if it's extremely slow.
However, it is not practical to provide special hardware
for all instructions. Since much of our instruction execu-
tion time is spent in decoding the instruction (that is, de-
termining what the instruction is), we designed the micro-
machine to decode all instructions quickly. By increasing
the performance for instructions that had slow execution
times in previous HP 1000s, we allow more flexibility in
the design of applications that use assembly language (such
as compilers).

Optimizing the design for user microprogramming was
more difficult. To accomplish this, we looked at the types
of functions that were likely to be microcoded {for example,
computation and bit manipulation) and provided sufficient
hardware to support these types of operations. Many of the
operations were all ready provided in the 2903; we needed
only to design the hooks to access them.

A block diagram of the processor is shown in Fig. 1. The
regularity of the flow of data through the machine is one
of the features that contributes to the ease of microprogram-
ming. At the start of a cycle, data is enabled from the appro-
priate registers onto the operand buses: the A-bus and the
B-bus. In one cycle, data is input to the ALU and passed
to a shifter. The resulting data is available on the Y-bus at
the end of the cycle. The Y-bus result can then be loaded
into a register or written to main memory. In the following
cycle, conditions generated by the operation just described,
such as carry out of the ALU, can be tested. The user does
not need to learn complex rules for the relationship be-
tween buses, registers, and conditions, since they are the
same throughout the machine. Registers are updated at the
end of the cycle and are available as operands for the next
cycle. The conditions that are tested are the conditions that
were generated during the previous cycle.

The flow of control in the micromachine is similar to
highJevel languages such as BASIC or FORTRAN. Iump
(goto) or jump to subroutine (callJ instructions are used
to transfer control to nonsequential locations in micro-
memory.

The key to the flexibility and performance of the AZ00
micromachine is the microinstruction set (called micro-
operations) and the microinstruction format. The width of
the microinstruction word was an important design deci-
sion. A longer microword means more operations can be
done in one microinstruction. This does not directly trans-
late into an increase in performance, since certain opera-

tions need to be done sequentially, such as adding two
numbers and then checking for overflow. We were also
developing writable control store (WCS) and PROM control
store (PCS), and a shorter microword makes these boards
less expensive and allows more words of micromemory on
each control store board. By careful encoding and over-
lapping of fields, we were able to use a 32-bit microinstruc-
tion word that allows several operations to be done in one
cycle (see Fig. 2). Fewer microoperations are available in
a jump instruction than in an instruction that does not use
a jump. However, in every microinstruction, one can per-
form an arithmetic or logical operation with the contents
of two registers and store the result in any register in the
machine. For example, one can add the contents of two
registers, perform a shift on the result, and then jump to
another location in micromemory, all in one cycle. To
test this design decision, most of the base instruction set
was microcoded before the processor hardware design was
solidified.

The decoding scheme for microinstructions ensures that
no combination of codable operations can damage the pro-
cessor hardware (such as enabling two registers onto the
same bus). Any other illegal combination of operations is
detected by the microparaphraser. Thus the micropro-
grammer need only remember the basic relationships for
data in the machine. the microinstruction formats. and a
few special rules concerning interaction with main mem-
ory, I/O, and the mapping system.

A hardware timeout feature provides some protection

Word
Type

1
oPr ABUS sP0 sP2 ALU BBUS STOR

Word
Type

2
oP2 ABUS sP0 CNDX ALU BAUS STOR

Word
Type

3
oP3 ADRS sPl CNDX ALU aBus STOR

Word
Type

4
oP4 ADRS sPl sP2 ALU BBUS STOR

Word
Type

5
oP5 ADRL (Long Branch Address) ALU BBUS STOR

Word
Type

6
)Pl DAT (lmmediate Oata) ALU BBUS STOR

Word
Type
1 S

oPl ABUS ALUS' SP2 SPEC BBUS STOH

Word
Type

2S
oP2 ABUS ALUS' CNDX SPEC BBUS STOR

Word
Type

3S
oP3 ADRS ALUS- CNDX SPEC BBUS sTon

Word
Type
4s

oP4 ADRS ALUS' sP2 SPEC BBUS STOR

Word
Type

5S
oPs

ADRL
(Long Jump Table Address)

SPEC BBUS STOR

'Special microorder in ALUS field when ALU field is coded SPEC.

F)9. 2. 4700 microinstruction formats.
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$origin 0x3000$
MAX:

s 1 : : a - b ;

"Start routine at 3O00 hex.
*A=arg1,B=arg2.
*Compare arguments.

from errant user microprograms. This protects the system
from a user microprogram's hanging and not allowing sys-
tem interrupts. If a system interrupt goes unserviced for
more than 10 ms, then the microprogram is aborted and
control is returned to the operating system.

The Mlcroparaphraser
One of the most important tools for the development of

microcode on the A700 is the microparaphraser, MPARA.
The microparaphraser was originally developed for the
,{700 and later adapted for the A900. All of the base instruc-
tion set, the floating-point instructions, and the microcode
diagnostics were written using MPARA.

MPARA allows the user to write microcode in free for-
mat, Pascal-like constructs. It then translates them into
microcode. The following example shows a microroutine
that finds the maximum of two numbers.

the WCS, enable it, and continue to run in the operating
system with the new microcode.

Hardware Floating-Point Board
The hardware floating-point board for the ,\700 Com-

puter is really two boards in one. A portion of the board
is designed to be a PROM control store board that can hold
4K words of microcode PROM. The first 2K is used to hold
the microcode that executes the floating-point-dependent
instructions in the HP 1000 instruction set, that is, single-
and double-precision floating-point, the scientific instruc-
tion set (SIS), and the vector instruction set (VIS). The
second 2K is available for user-microcoded routines.

The main area of the board contains the floating-point
hardware, which is used during the execution of floating-
point instructions. This portion of the board is designed
around the computational power of three CMOS/SOS float-
ing-point chips (see page 77). These chips are designed
specifically to perform HP 1000 integer and floating-point
arithmetic.

The design of the floating-point board evolved through
a number of iterations. These iterations required designing
a preliminary version of the hardware, then writing the
microcode for the floating-point, SIS, and VIS instructions
using the features in that version of the hardware. After
determining the execution time of the instructions and
evaluating the good and bad features offered by that particu-
lar revision of the hardware, another pass at the hardware
was made. This cycle was repeated until all the hardware
capabilities needed to optimize the execution of the in-
structions were included in the design.

One of the more significant improvements in the design
of the hardware was the addition of an on-board arithmetic
constant ROM (ACR), which contains single- and double-
precision floating-point constants. The ACR has over 100
constants which are used during the execution of the SIS
instructions and for the self-test diagnostics. The ACR is
accessed indirectly through an address pointer which is
automatically incremented after each use, allowing the ad-
dress pointer to be set to the front of a list of constants
which are to be required in a known order. The main advan-
tage of using the ACR is in eliminating the overhead re-
quired to pass fixed-value operands (e.9., rr, nl4, ln?,7l2,
etc.) from the micromachine to the floating-point board.
This savings is most significant in the evaluation of the
SIS instructions where many constants are required in the
polynomial approximation of the functions. (The evalua-
tion of an arctangent can require up to seven constants.)

Another important feature is the set of four on-board
accumulators, each capable of holding a single-precision
(3z-bit) or double-precision (64-bit) floating-point number.
These accumulators eliminate the necessity of repeatedly
passing the same floating-point number to the board when
it is required more than once during the evaluation of an
expression such as (x+y)/(x-y). The accumulators also
increase performance by temporarily saving the inter-
mediate results of a polynomial expression. The ability to
save intermediate results on-board instead of unloading
and later reloading the value significantly reduces the
execution time of the SIS and VIS instructions.

Another feature included in the design of the floating-

if alov then goto ChangeSense; *If arithmetic overflow then

ify15 then stor,
a : -b ;

rtn;
ChangeSense:

if not y15 then stor,
a :  =b ;

rtn;

" switch sense of compare,
*If result was negative, then
* returnarg2(elsearglJ.
"Return, maxis inA.

*If result was positive then
* returnarg2(elseargl).
*Return. max is inA.

A phrase can be an arithmetic expression, such as:
s 1 : : a - b

or a conditional operation:
if alov then goto ChangeSense

or an individual microorder:
rtn

Phrases, which are delimited by commas, can be strung
together in any order as long as they represent a legal mi-
croinstruction. A sentence is a complete microinstruction
and is terminated by a semicolon. This type of format makes
microcode easy to read and write and also allows plenty
of room for comments (especially important for micropro-
gramming).

Writable and PROM Gontrol Store
Two types of user control store boards were designed to

facilitate user microprogramming and to aid the design
team in the development of the A700 processor. The PROM
control store board (PCS) provides inexpensive storage for
up to 8K of microcode. The writable control store board
(WCS) allows microcode to be downloaded and altered
dynamically during the debugging process.

Since the control store PROMs used in the '{700 were
initially expensive and not reprogrammable, it was not
practical to change the base set PROMs on our breadboards
whenever bugs were found during development. Therefore,
we made use of a special feature of the A700 processor
which allows us to overlay the base instruction set on the
processor board with the microcode on the WCS board.
Using this "mindswap" feature, we could download from
the operating system the latest revision of microcode to
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From Micromachine (Y-Bus)

point board is the ability to clock operands into the floating-
point chips at twice the micromachine clock frequency.
Because the input clock rate of the floating-point chips is
twice the speed of the processor microcycle time, opera-
tions that do not require operands from the micromachine
can clock their operands into the chips twice per microcy-
cle. All transfers between the floating-point chips and the
accumulators or ACR can be performed at twice the micro-
cycle rate. This reduces the time spent in transferring the
operands of intermediate results to the chips, and results
in faster execution times.

To make the addition of the optional floating-point board
to an A700 system easier, the floating-point microcode will
overlay the portion of the microcode on the processor card
that decodes floating-point-dependent macroinstructions.
The floating-point board can then intercept and redirect
the execution of the floating-point instructions to the mi-
crocoded routines contained on the floating-point board.
Thus no changes need be made to the A700 base set micro-
code when the hardware floating-point board is added to
the system, making customer upgrades simpler.

Fig. 3 shows a block diagram of the internal data paths
on the floating-point board. Surrounding the three math
chips are state machines, control logic, four accumulators,
the ACR, and clocking circuitry. The hardware floating-
point board is designed to be an optional coprocessor board
for the A700 CPU. To the ,t700 micromachine, the floating-
point board looks like four 16-bit registers. These four reg-
isters are readable and writable by the micromachine and
appear as four locations in an external register file that are
dedicated specifically for use with the floating-pointboard.

To use the floating-point board, a control word is first
passed to one of the four dedicated registers. This control
word contains such information as which chip to use, what
operation to perform with that chip, where the operands
are to come from (an accumulator, the ACR, or the micro-

Flg. 3. lnternal data paths on
the A70O hardware tloating-point
boatd.

machine), and where the result is to be stored. Once a
control word is passed to the floating-point board, the
necessary operands are then passed to the board through
the dedicated register locations.

As pairs of operands of equal significance are available
on the floating-point board, the control logic clocks that
pair of operands into the selected floating-point chip. When
all operands have been clocked into the chip and the re-
quired propagation delay has passed, the results of the
operation are available to be read by the micromachine
from one of the dedicated register locations. An overflow/
underflow signal is also available to the micromachine at
one of the registers.

The microcode written for the floating-point board takes
full advantage of the independence of the micromachine
and the floating-point board. For example, during the time
when an operation is being performed by the floating-point
board, the micromachine can be resolving the indirect ad-
dresses for the result, fetching the next operand from mem-
ory, or doing arithmetic/logical operations of its own. This
independence is used to full advantage during the execu-
tion of the VIS instructions. Each vector instruction was
written to minimize the time to compute one element of
the vector. This microcode generally has six operations to
perform for each element of the vector:
I Execute the required floating-point operation
r Fetch the next operands from memory
r Return the results from the previous computation to

memory
r Update all memory address pointers bythe correct incre-

ment
r Check the loop count for the end of the instruction
r Check for system interrupts.

For each VIS instruction an inner loop was written that
minimizes the time required to do this work. Because this
code is optimized for execution speed and large memory
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bandwidth rather than ease of entry and exit, it is necessary
to precede this code by a section of front-end code that
slmchronizes with the inner-loop code. The results of this
work enable the MS instructions to execute very close to
memory speed for single-precision operations, and at mem-
ory speed for double-precision operations. This yields an
improvemenl oI 7y2 to 3 times compared to the execution
speeds on the HP 1000 F-Series Computer.
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Designing a Low-Cost 3-MIPS Computer
by Donald A. Williamson, Steven C. Steps, and Bruce A. Thompson

HE A90O COMPUTER provides approximately three
times the performance of any previous HP 1000 Com-
puter, while maintaining full software compatiblity

with the other HP 1000 A-Series Computers. The cost of
the A900 is noticeably lower than that of many computers
of similar performance, giving it an excellent price/perfor-
mance ratio. To achieve this price/performance ratio, the
performance was optimized, but not by adding a lot of
additional parts and complexity.

To increase the performance of a computer, the amount
of work done in each machine cycle can be increased and
the cycle time can be decreased. This can be accomplished
by widening all of the paths to 32 or 64 bits and using a
very fast technology such as emitter-coupled logic (ECL).
This approach was not used in the A900 because it leads
to a very high-cost computer. Instead, care was taken to
add cost only where it was justified by a significant perfor-
mance gain, and to minimize cost elsewhere'

Although the A9O0 is completely software compatible
with the other members of the A-Series, it has a somewhat
different hardware structure. Fig. 1 shows a basic block
diagram for both the A600 and A700 Computers, while Fig.
2 shows the basic block diagram for the A900. All three
machines are microprogrammed and therefore have data
paths that are controlled by a microcode sequencer. The
A600 and A7o0 have a common memory-I/O bus used by
both the CPU and the UO system to access memory. The
I/O bus in the A9O0 is electrically and mechanically the
same bus as the memory-IiO bus in the A600 and A700.
However, the ,\900 does not fetch instructions or data
across this bus. The CPU uses the bus only to communicate
with the VO system. This structure helps achieve the main
goal for the A900: high performance without the normally
associated high price.

Sequencer
The A900 is a microprogrammed computer. This means

that each machine language instruction (macroinstruction)
is emulated by a sequence of microinstructions. The format
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of the macroinstructions is fixed by compatibility with
other tIP 1000 Computers, but the format of the microin-
structions is tailored to the hardware used to implement
the A900.

Each microinstruction is 48 bits wide, allowing several
operations to be specified in parallel. For instance, a con-
ditional jump, an ALU operation, and a memory operation
can all be coded in a single microinstruction. Thus the
microprogtammer can test a condition, perform a calcula-
tion, and start reading the next operand, all simultaneously.

The microcode sequencer controls the sequence of micro-
instructions that are used to emulate each macroinstruc-
tion. Ablock diagram of the sequencer is shown in Fig. 3.

The sequencer selects a microaddress from the micro-
program counter, the microsubroutine stack, or a field of
the current microinstruction. The control store takes this
address and generates a microinstruction which is loaded
into the microinstruction register at the end of the micro-
cycle. Usually, one of the critical timing paths in a micro-
programmed machine is the decision point between a con-
ditional branch and sequential execution. In the A900, the
"condition met" signal controls a multiplexer at the output
of the address selection logic. Thus the signal can arrive
later in the cycle without becoming a critical timing path.
This helps in reducing the cycle time of the ,{900 micro-
machine to 133 ns.

Each time a new macroinstruction is fetched. the se-

Ffg. 1. A basic block diagram for the 4600 and 4700 Com-
puters, showing the common memory-llO bus.

Memoryl/O Bus



quencer must determine the sequence of microinstructions
needed to emulate it. Traditionally this is done by sending
the macroinstruction to a jump table (AfT) which produces
the address of the first microinstruction of the emulation
sequence. Since this address must then be sent to control
store to produce the actual microinstruction, the decoding
process takes two entire cycles. The ,4.900 adds another
type of jump table (IJT) which receives the macroinstruc-
tion and produces a microinstruction instead of a microad-
dress. The IJT is built with programmable logic arrays
(PLAs), and can produce microinstructions for the most
common macroinstructions. While the IJT is guessing the
first microinstruction of the emulation sequence, the AfT
is looking up the address of the second microinstruction.
While the first microinstruction is executing, the control
store is looking up the second microinstruction. The result
is that it takes only one cycle instead of two to determine

Conditions lrom
olher Parts of Machine

Fig. 3. Ihe seq uencer controls the sequence of microinstruc-
tions lo emulate each macroinstruction.

Flg.2. A basic block diagram for
the A90O Computer, showing the
separate memory and llO buses.

the first microinstruction of the sequence. This is a signifi-
cant savings, since many important macroinstructions take
only two cycles to execute.

Plpelined Data Path
The data path is where much of the data manipulation

required by the HP 1000 instruction set is done. A block
diagram of the A900 data path is shown in Fig. 4. Operands
from the register file, cache memory, or other parts of the
machine are operated on by the ALU, the shifter, or the
floating-point unit, and the result is stored in the register
file, the cache, or some other machine register. Accessing
the operands, performing the operation, and storing the
result take longer than the 133 ns available in an lA,900
microcycle. Therefore, the data path is split into two pieces
by a pair of pipeline registers.

In the first cycle of a microinstruction, the operands are
read and loaded into the pipeline registers. During the sec-
ond cycle, the operation is performed using the values in
the pipeline registers, and the result is stored. During this
second cycle, the operands for the next microinstruction
are being read. Even though it takes two cycles to complete
a microinstruction, the parallelism allowed by the pipeline
registers lets a new microinstruction start every cycle (see
Fig. 5).

A side effect is that the result of a microinstruction started
in cycle 1 is not stored until the end of cycle 2 and therefore
cannot be used until cycle 3. The register file is paralleled
by a pair of latches which can be used as accumulators.
The latches become transparent if they are written at the
same time that they are read. The result from a cycle 1
microinstruction can be written into one of the pipeline
registers at the end of cycle 2 by storing it to an accumulator.
In other words, if a result is stored to one of the ac-
cumulators it can be used immediately instead of one cycle
later.

The data path is designed to maximize the amount of
work that can be done by a single microinstruction. For
instance, the register file is double-ported, allowing access
to two operands at a time. The shifter can logically shift
the 32 bits of data in the pipeline registers by 0 to 1s bits
and produce a 16-bit result. Using this barrel shifter, any
type of shift----arithmetic, logical, or circular----can be ac-
complished in a small number of cycles.

There are actually two independent paths within the

Control to other
Parts of Machine
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data path. One of these is the path from the pipeline regis-
ters, through the ALU or shifter, and out to the cache or
other register. The other is a path from the right pipeline
register through a buffer to the register file. The paths are
often interconnected by a bidirectional buffer pair. This
allows simple operations such as storing the ALU output
in the register file or passing the right-side operand to the
cache. The paths can also be used independently, allowing
two data transfers in a single cycle. For example, data from
the cache can be passed to the register file using the right
pipeline register, while data from the register file is sent
to the cache via the left pipeline register and the shifter.

The floating-point unit dramatically reduces the number
of cycles needed to perform floating-point operations. It
uses the three LSI floating-point chips described in another
article in this issue. Because the chips are tightly coupled
into the data path, the 32 bits of data from the pipeline
registers can be loaded into the chips each cycle. After a
full set of operands is loaded, the chips produce the result,
which can be unloaded via one of the pipeline registers
several cycles later. The chips are also used to perform
integer multiplication and division.

ilemory System
The memory system includes three pieces. The first piece

is the address creation logic. This logic generates the appro-
priate addresses for the cache, which might be used for
fetching an instruction or reading the data needed for an
instruction. The second piece is the cache memory. A cache
memory is a very high-speed memory which keeps only a
subset of main memory. The goal of a cache memory is

I t
Load Pipellne
Reglstcrs with
1st Operands

Load Pipeline
Rsgisters with
2nd Operands

Cycle 1 Cycle 2 Cycle 3

Read lst Operands Read 2nd Operands Read 3rd Operands

Ffg.4. Ihe A9@ data path. The
tvvo pipeline registers make it pos-
sible to staft an operationwhilethe
preceding operction is sti// in
progress. The accumulators make
lf posslb/e to use the result of a
microcycle immediately instead of
one microcycle later.

that of any memory hierarchy: achieve performance close
to that of the fastest memory (cache memory, in this case)
with a cost closest to that of the slowest memory (main
memory, in this case). The third piece of the memory sys-
tem is the main memory itself.

One of the performance-critical parts of most computers
is the path from instruction fetch to operand ready. This
includes the decoding of the instruction, the extraction and
merging of the appropriate fields, and the starting of the
memory request. Typically, this is done by the micro-
machine using the main ALU. However, in the A900, al-
most all of this is done in hardware.

HP 1000 instructions that reference memory can be of
two types. The memory reference group (MRG) instructions
are the most commonly executed instructions in the tIP
1000 instruction set. These instructions have a four-bit op-
code, a 10-bit offset, a zerolcurrent page bit, and a direcUin-
direct bit. The other type of memory reference instructions
has a 16-bit opcode followed by a 15-bit address with a
direcUindirect bit.

If the instruction is of the first type (MRG), the A900
hardware creates the appropriate address from the current
program counter page value and the offset from the current
instruction. A memory reference with this address is then
started by the hardware. If the address is indirect, the ad-
dress creation hardware can freeze the CPU until a direct
address is read, since multiple levels of indirect addressing
are allowed. If the instruction is of the non-MRG type, then
the address creation hardware increments the program
counter and starts a memory reference.

By the time the microcode sequencer can vector to the

t
Load Plpellne
Registers with
3rd Operands Flg. 5. Timing in the pipelined

A900 Computer. Afthough it
takes two microcycles to com-
plete a microinstruction, a new
microinstruction is stafted every
mictocycle.

Do lst Operation 
+ 

Do 2nd Operation

I
Store lst

Result
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correct microcode for the instruction, the memory operand
data can be ready. This allows for a much shorter sequence
of microinstructions for each machine language instruc-
tion. In fact, an instruction whose operand is another in-
struction (e.g., the jump instruction, fMp) can be executed
in just one microcycle without the added cost and complex-
ity of machine language instruction pipelining.

Cache Memory
The cache memory of the Ag00 has a data access time

of 65 ns and a cycle time of 133 ns. This allows a memory
reference every microcycle, thus allowing the computer to
get more done per cycle. Also, since the access time of the
cache is many times faster than that of main memory, the
processor cycle time can be much shorter than that of a
noncache system.

A normal cache structure is shown in Fig, 6. A cache
write cycle cannot begin until the appropriate address is
known to be in the cache. This means the minimum cycle
time for a cache write is the time for valid address, plus
the time to translate logical to physical address, plus the
time to access the tag RAM, plus the time to compare the
tag address to the desired address (hiUmiss), plus the time
to generate a write strobe (or enable), plus the time for
which the write strobe must exist. As shown in Fig. 6, this
requires a minimum write cycle time of 144 ns, assuming
proper clock edges and no skew. Fig. 7 shows the cache
structure used in the 4900. Note the parallel nature of the
logical-to-physical translation, tag store access, and data
store access. The ideal minimum cycle time for this struc-
ture is 79 ns. This fits nicely in a 133-ns cycle with plenty
of room for obtaining necessary clock edges and allowing
for skew. This scheme for handling writes allows the A9O0

9 ns Logical Address Valid
20 ns Logical to Physical Translation
45 ns Tag Store Access
20 ns Tag Compare
10 ns Write Strobe Generation
40 ns Write Strobe Width

144 ng

Fig. 6. /n a normal cache memory tike this one, a cache wilte
cycle cannot begin until the appropriate address is known to
be in the cache. The minimum write cycle time shown as-
sumes proper clock edges and no skew.

9 ns Logical Address Valid
20 ns Logical to Physical Transtation
10 ns Write Strobe Generation
40 ns Write Strobe Width
79 ns

Fig.7. The Ag00 cache memory has a parailel structure,
allowing faster operation than a normal cache. The minimum
write cycle time fits nicely into the 133-ns cycle with ptenty
of time for obtaining necessary clock edges and altowing for
skew.

cache to do a write every cycle and still have a very short
cache cycle time.

In a typical cache memory system, direct memory access
(DMA) from I/O cards comes directly into main memory.
This means that main memory has to be double-ported,
that is, it has to arbitrate between two address/data sources
before starting the memory cycle. In the .\900, DMA comes
directly into the cache. This eases the problem of cache
data consistency (i.e., keepingcache data and mainmemory
data for the same address consistent). It also keeps the
memory system simpler since main memory can now be
single-ported. Another benefit is that it allows very tight
coupling of the cache and main memory. On the ,4,900,
every access to the cache also causes the translated physical
address to be sent directly to main memory. Since there is
no arbitration, this address can be set up on the memory
RAMs on the memory array cards. If a fault* is detected,
almost no time is lost in starting the main memory access.
This gives an unusually fast fault handling cycle. Instead
of the typical 6 to 12 clocks, the A900 can handle a fault
in only three additional cycles. Since the effective access
time of a cache memory system is described by the equa-
tion:

Effective access time : Hit cycle time x hit ratio
+ fault cycle time x miss ratio

decreasing the fault handling cycle can be just as effective
as increasing the hit ratio, which requires the expense of
a larger cache.

In addition, improving the fault handling time vastly
improves system performance during periods when caches
are not very effective. A typical example is process switch-
'ln this section, a lault means a miss, that is, the requested data is not in the cache and
must be obtained from main memory. This kind of lault is not a memory error or failure,
and the handling of this kind ol fault shourd not be conlused with memorv error detection
and correction.

HiUMiss
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ing, which occurs whenever an interrupt occurs. Thus,
optimizing the A900's fault handling time improves its
real-time capabilities.

To achieve its excellent fault handling time, the 4900
uses a 32-bit path to and from main memory. Since the
cache block size is 32 bits, a fault can be handled in just
one read or write to main memory. This is an important
feature in reducing the fault handling cycle time, thus giv-
ing more time to the processor.

Technology
To build a high-performance computer with a very low

price, one needs not only to be clever in the design of the
computer, but also to incorporate new technologies. In the
desigrr of the 4900, several new technologies are used.
Most of the logic in the computer uses a new fast, low-
power Schottky logic family that not only provides a fast
cycle time, but does so without the added heat, power
supply, and cost penalities of conventional high-speed
Schottky logic.

Programmable logic arrays (PLAs) are also heavily used
in the A900. Small, 20-pin versions became available just

in time for use on the A900. These PLAs allow most of the
state machines and decoding logic to be integrated into a
very small number of devices that are very easy to alter.
Most of the other random logic also uses PLAs. This made
the debugging of the A900 much faster than conventional
desigrrs, so the computer could be shipped much sooner.

As mentioned earlier, the floating-point operations in
the A900 are done by a set of SOS (silicon on sapphire)
LSI chips. By integrating the performance-sensitive part of
the computer on very low-power LSI chips, the A900's
power, size, and cost were minimized while achieving a
very high level of performance.

Plpellnlng and User Mlcroprogramming
The A900 is the first HP 1000 Computer to use pipelining

in its data path to improve performance. Pipelining affects
the way in which algorithms and microcode sequences are
designed. A user writing an isolated line of microcode does
not need to know when the different sections of the micro-
code line will be executed. However, in a complete micro-
program, various effects of the pipelining will show up in
the register transactions, conditional status checks, mem-
ory operations, etc.

All of the microprogramming examples shown here are
written in the A900 microprogramming language and can
be compiled to executable microcode using the A900 mi-
croparaphraser. The A900 microprogramming language
looks very much like a higher-level language using free-
field notation and formats. It allows the user to generate
microcode without concern for the actual format of a micro-
word. With the microparaphraser and its associated tools
in the ,{900 microprogramming package, a programmer can
quickly generate a microprogram to enhance the perfor-
mance of an application with a minimum of effort. Perfor-
mance enhancements of 3 to 20 times are typical.

The pipelining of the micromachine data path has the
largest impact on user microprogramming, essentially caus-
ing all micromachine data transactions to take two cycles
to complete. As shown in Fig. 4, two pipeline registers,
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LREG and RREG, are placed in the data path at the inputs
of the ALU to split data path operations into two phases.

In the first phase, data flows from the dual-ported register
file (or other inputs) and is clocked into LREG and RREG.
In the second phase, data is taken from the pipeline regis-
ters, flows through the ALU, and is finally stored back into
the register file or other write-only registers.

The effect on user microcode is that registers stored on
one cycle are not updated until two microcycles later. As
a result, the microinstruction sequence

will swap the contents of registers r3 and r5 instead of
simply copying r3 to r5 as one might expect. To have the
above code sequence copy 13 to 15 you would have to add
a dead cycle to allow the pipe to empty and have 15 really
reflect the value of r3 before copying it back. The microin-
struction sequence below will end with 15 containing the
same value as r3.

r5: :  13;
13: :  15;

15 : :  13 ;
nop;

13 : : r 5 ;

* Microcycle 1. Copy r3 to 15.
* Microcycle 2. Copy old 15 to 13.

*Microcycle 1. copy13 to 15
*Microcycle 2. This is a dead
*cycIe to allow 15 to get the updated
"value of 13.
*Microcycle 3. This does nothing
"important since r5 already
*contains the same value as 13.

Two special registers do exist in the A900 micromachine
(the accumulators) that will reflect updated values on the
very next microcycle after they are stored to. These registers
are used when data must be chained through several ALU
operations.

Because of data path pipelining, condition codes based
on the output of the ALU will not become valid for two
cycles. The microcode sequence below shows an example
of testing a condition generated by the ALU.

nop: :0 ; *Microcycle 1. Send o through the
*ALU to test it.

nop; *Microcycle 2. We must wait a cycle
"for conditions from the ALU to
*become valid. Normally, an algo-
*rithm would be designed in such a
*way that the micromachine will be
*performing some other task here.

If TZ then go to Zero; *Microcycle 3. This is a test for
*a zero output from the ALU.
"TZ tests for zero so this
*linewill jump.

Other sections of the A900 micromachine are pipelined

besides the data path. One of these areas is the memory
address creation logic, which is essentially another data
path. Because the memory address creation logic is
pipelined, microorders that work with this logic affect
either the current or the following instruction. Actions can
be initiated on one microcycle and then modified on the

next microcycle. An example of using these microorders
is shown by the following sequence.



m 1 < : m 1  +  1 ;

ninci

*Microcycle 1. Increment memory
*address pointerml.
*Microcycle 2. Stop the increment-

below shows an example of the use of this feature.

If TZ then go to dont_inc, m1<:m1 * 1;

inc: nop;

*Microcycle 1. This is just a
*conditional branch that
*in the same microcycle starts
*the piped operation of incrementing
*memory address pointer m1.
*Microcycle 2. Here is one target of the
*conditional branch. The nop here
*is to show that memory address
*pointer m1 was incremented
*since no modifuing microorder
*was used here.

*Microcycle 2. Here is the other
*target of the conditional
*branch. Here a
*modifuing microorder is used
*to stop the incrementing
*o fm1( :m1 * lbe fore
*ithas completed.
*Thusml( =ml * 1
*can be effectively
*used in both paths of the
*conditional branch.

dont-inc: ninc:

A final key to generating efficient algorithms for a
pipelined micromachine is creating efficient code for al-
gorithms with loops. In these algorithms, the loop time is
most often the determining factor in how fast the algorithm
will run. Therefore, the loop itself should be designed first
for efficiency, and then the entrance and exit to the loop
can be added.
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*ing of address register m1.
*Register m1 will remain
*unchanged.

Another feature of the A900 micromachine that is valu-
able for making algorithms execute efficiently is the ability
to store data path outputs to multiple destinations at once.
Dual microstore fields let the programmer create an expres-
sion such as:

m1( ( r5 : : 14  *  1 : *Increment register
*r4 and store it to
*both 15 and memory
*address pointerml.

Algorithms designed for a pipelined machine must be
designed carefully to make use of every micromachine
cycle. Algorithms are most efficient if they can be broken
down into different sets of interdependent steps. When
writing the code, these sets can be combined and inter-
twined so that the dependent steps of each process iue
separated by the number of steps in the pipe, in this case
two cycles. In the ,\900 micromachine, dependent steps
in a process can also be performed one a{ter another by
using special registers (accumulators) that bypass the data
path pipe.

An algorithm that contains many decision points or con-
ditional branches is more difficult to design efficiently on
a pipelined machine. For these algorithms, operations that
take more than one cycle to complete because of the pipe
(such as condition code generation) should be ordered in
such a way that they are meaningful if either path of an
intervening conditional branch is taken. A feature of the
A900 micromachine that lends itself well to designing this
type of code efficiently is the ability to start a piped oper-
ation in one microcycle, and then modify its action in the
next cycle before it completes. The short code sequence

Floating-Point Chip Set Speeds Real-Time
Computer Operation
by William H. McAllister and John R. Carlson

LOATING-POINT ARITHMETIC performance is a
prime concern in technically oriented computers.
Using Hewlett-Packard's silicon-on-sapphire CMOS

process we have designed a set of three monolithic floating-
point processor chips for use in two HP 1000 A-Series
Computers, the ,t900 and the A700. The chip set provides
a cost-effective, high-performance solution for high-speed

computation.
The set consists of three chips, one each for addition,

multiplication, and division. Each chip can perform arith-
metic operations on 32-bit and 64-bit floating-point num-
bers and on 32-bit integers.

The primary design objective was to maximize the speed
of floating-point scalar (single-element) operations. This
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Flg. 1. The floating-point add, multiply, and divide chips have
this block diagram in common. They have similar user inter-
faces and operate in roughly the same manner.

goal was achieved by partitioning the design into three
integrated circuits. Each is individually optimized to pro-
vide the maximum speed for the most common floating-
point operations. To simplify the desigrr task and to take
advantage of the inherent speed of the SOS process, we
use predominantly nonclocked combinational circuits.
This desigrr technique allows each operation to proceed as
quickly as the logic will allow without requiring a periodic

OUT-

Flg. 2. A 2 : 1 multiplexer implemented with two pass transis-
tors and a level-restoring inverter. The circles indicate p-chan-
nel devices. One of the pass lransisfors in turned on by the
sELEcr+ signal. Half of the time the input translstors musl
pass a degraded signal, which is restored by the inverter.
Ihls clrcur? ls slowet but more compactthan other multiDlexer
implementations.

pause to latch intermediate results.
The second design goal was to allow fast vector (multiple-

element) operation. The add and multiply chips have a
special pipeline register to allow the overlapping of load/
unload cycles with the combinational data path delay.
Using the chips in vector mode allows a string of similar
operations to be performed with great speed.

Chlp Operation
The block diagram in Fig. 1 is common to the three chips,

which have similar user interfaces and operate in roughly
the same manner. Each chip has three 16-bit buses. Two
(A and B) carry the input operands and one (D) carries the
output result. The 32-bit or 64-bit operands are moved to
the chips in sequential 16-bit words. Function codes are
loaded on a separate bus. The 32-bit or 64-bit result is
unloaded in successive 16-bit words.

The operands are loaded, 16 bits at a time, into registers

Voo

r
V

Flg. 3. Ihls is a 16-bit slice of a 64-bit carry propagate adder. lt has three levels of cany
lookahead logic. The Aand B bits arcthe inputoperandsto be added.They are EXCLUSIVE-ORed
to produce a propagate term, which controls a 2:1 multiplexet in the carry chain and helps to
form the sum D. The different parts of the carry chain allow carry signals to skip 1 ,4, or 16 bits

at a time.
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on the selected chip in two to four clock cycles. The data
propagates combinationally through the data path logic
until the result is settled at the output. The result is then
unloaded, 16 bits at a time, in two to four clock cycles. For
the add and multiply chips, the propagation delay of the
data path varies from 400 to 900 ns depending on the op-
eration performed. The divide chip, however, is not fully
combinational and requires two to four times the delay of
the other two chips.

Clrcuit Design
The design of the floating-point chip set required the use

of some novel hardware structures to limit the size of the
chips and achieve maximum speed at the same time. HP's
CMOS-on-sapphire process has 4-g.m feature sizes and metal
gate devices. The device thresholds arc 7.zS volts and the
chips use a * 12-volt power supply. Compared to traditional
CMOS which uses a silicon substrate, SOS devices exhibit
less threshold variation caused by the body effect. This
allows circuit design using devices as source followers. A
transistor can be configured to pass the "wrong" logic level,
i.e., an n-type device passing a high voltage or a p-type
device passing a low voltage.

Fig. 2 shows an example of a 2:1 multiplexer im-
plemented with two single-sided pass transistors and a
level restoring inverter. The layout for this circuit is very
compact owing to another feature of the SOS process. Since
SOS transistors are built on individual islands of silicon,
they are electrically isolated from each other by the sap-
phire substrate. This allows n-channel and p-channel tran-
sistors to be placed next to each other. The density advan-
tages of the single-sided circuit are the key to the implemen-
tation of large data path arrays used on the chips. A less
compact layout would have caused the chips to be too large
for economical production.

As an example of the types of digital circuits used, Fig.
3 shows the schematic for a function used on all of the
chips. We needed a very high-performance 64-bit adder

Fig. 4. Floating-point add chip contains about 30,000 transrs-
tors and measures 5.8 bv 6.4 mm.

that did not use too much area for carry propagation cir-
cuitry. An efficient carry lookahead scheme takes advan-
tage of the 2:1 multiplexer shown in Fig. 2. It allows a
64-bit adder to be constructed with three levels of carry
lookahead and a delay of only 15 full adders. In contrast,
a 64-bit ripple adder requires 64 full adder delays.

Add Chip
The add chip is shown in Fig, 4. Fig. 5 is a block diagram

of the data path portion of the chip. There are about 30,000
transistors on this 5.8x6.4-mm die. Most of the area is
devoted to the fraction path in the center and right side of
the photograph. The hardware structures in this part of the
chip are the input registers, right shifter, main fraction
adder, priority encoder, left shifter, incrementer, and out-
put pipeline register. The shifters are easily recognized by
their slanting pattern. The exponent path fills the upper
left portion of the chip and control logic takes up the lower
Ieft portion.

After the operands are loaded, the exponent fields are
compared. The larger exponent is passed on and the differ-
ence in the exponents is used to control the right shifter.
The right shifter aligns the binary point of the smaller
operand with that of the larger, The operands are then

Exponent
Data Path

Fraction
Data Path

Fig. 5. 8/ock diagram of the add chip. After the operands
are loaded, all computation is done by combinational logic.
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added or subtracted by the 64-bit main adder. If the fraction
overflows, a signal is sent to the exponent path to cause
an increment. The fraction is also right shifted one place
to keep it in the proper scale.

If a subtraction is done there may be cancellation of
leading significant bits. This result is called an unnor-
malized number. The required result is a normalized
number. The priority encoder searches from left to right
looking for the first significant bit and encodes its location.
The left shifter uses this value as a shift count to renor-
malize the result. The shift amount is also subtracted from
the exponent.

The next step is to round the result to the proper precision
using an incrementer. An overflow from the fraction once
again causes the exponent to increment. Finally, the expo-
nent is checked for overflow or underflow and the proper
status bits are set.

After the operands are initially loaded into the chip, all
computation is done by strictly combinational logic. The
worst-case delay path passes through a few hundred gates.
It takes about 700 ns from the time the inputs are loaded
until the result appears at the output pads.

Multiplication Technique
The floating-point multiplier chip uses a technique

called the modified Booth algorithml to do a combinational
multiplication of the operand fractions. This algorithm is
used in a number of commercial monolithic multipliers
and is the key to integrating this common function. The
algorithm reduces the number of gate delays by nearly a
factor of two with little increase in chip complexity com-
pared to more traditional methods of multiplication. This

Fig.7. Floating-point multiply chip measures 6.1 by 7.0 mm
and contains about 60,000 translstors.

reduction in propagation delay is accomplished by encod-
ing one of the operands into a new form before applying
it to the multiplier array.

To understand how the algorithm works, it is best to
interpret the encoding in a mathematical sense. The encod-
ing scheme can be thought of as mapping one binary
operand into an equivalent set of signed digits. The particu-

lar encoding we choose turns out to reduce the number of
full adder rows by a factor of two' The encoding is shown

Sttc,.A.A"

BSDo

BSDI

Example:

sDc

10 00 11 00 =140ro

t t t l
V  V  V V
2  1 - 1  0

/  /  \ \r '  /  \ \
i12"1 + i lzoY 1) 1x21)o(2o)
1 2 8 + 1 6 - 4 + 0 = 1 4 0 r o

S*t

s*,

A,An C+r  S*z

(c)(b)(a)

Fig. 6. Ihe floating-point multiplier chip encodes one of the operands (B) into an equivalent

set of signed digits, thereby reducing the number of full adder rows required by a factor of

rwo. (a) Encoding scheme. SDC ls the signed digit carry. (b) A diagram showing how a binary

number is converted to a signed digit representation. Each encoder acts like a full adder with

three inputs-two consecutive B operand bits and a signed digit carry in. lts outputs are a

sryned digit and a signed digit carry out. (c) A circuit that multiplies a signed digit BSD by a
binary bit A.
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Signed Digit Encoding

Bn+l Bn SDCi.
tiflir" sDcout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
+ 1  0
+ 1  0
+ 2 0
+ 2 0
- 1  1
- 1  1
0 1



in Fig. 6. The B operand bits are mapped into a set of signed
digits ( + 2, + 1, 0, - 1). This representation is used in place
of B to drive an array of full adders and multiplexers.

The signed'digit representation of B has the property of
simplifying multiplication substantially. Each of the signed
digits is simple to use as a multiplier. The 0 and .+ 1 signed
digits act just like binary digits in the traditional multiply.
A + 2 multiple can be obtained by a one-bit left shift. A
-1 multiple takes the two's complement of the input
operand (invert and add 1). A circuit that multiplies a
signed digit by a binary bit is shown in Fig. 6c. It consists
of a 4:1 multiplexer and a full adder. Since there is a2-to-7
compression when encoding binary bits into signed digits,
we only need half as many of these multiplier circuits.

Multiply Chip
A photograph and block diagram of the multiply chip

are shown in Figs. 7 and B. Floating-point multiplication
is relatively simple compared to addition, so the chip has
a much more regular appearance than the adder. The major-
ity of the chip area is used to perform a combinational
56-by-56-bit integer multiplication of the operand frac-
tions. The circuitry in the lower left of Fig. 7 is the exponent
data path where the operand exponents are added. The
chip is 6.1by 7.0 mm and contains about 60,000 transistors.

The A operand fraction is loaded into a register across
the top of the chip. The B operand fraction is loaded into
a register along the left side of the chip. The exponent
fields of each operand are latched into the exponent data
path at the lower left. Initially, the exponents are added

Fag.g. Floating-point divide chip measures 5.2 by 7.2 mm
and contains 35,000 franslstors.

together and the fractions are masked to the proper preci-
sion.

The B operand is encoded as described above. The A
operand drives into the central array from top to bottom
and the encoded B operand is driven across the anay from
left to right. The array performs an integer multiply with
the most-significant bit of the product emerging at the lower

Fig. 8. The multiply chip pertorms
a combinational 56-by-56-bit in-
teger multiplication of the operand
fractions. The 112-bit Product is
normalized if necessary and
rou n ded to the requ i red precision.
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left corner. The product bits extend across the array to the
lower right corner and continue up the right side to the
very top right where the least-significant bit comes out. A
112-bit product is developed fromthe two 56-bit operands.

The integer product is normalized if necessary with a
one-bit left shift and then rounded to the final precision.
The exponent may need to be incremented if there is a
fraction overflow from either normalizing or rounding. If
control logic detects an overflow or underflow, the proper
constants are forced into the result.

Dlvlde Chlp
The floating-point divide chip is shown in Figs. 9 and

10. The layout is similar to the multiplier with a large
fraction data path in the center and a small exponent data

New
Remalnder

path in the upper and lower left. The chip is S.2by 2.2
mm and has 35,000 transistors. The algorithm used is not
fully combinational like the other two chips. It requires
multiple clock cycles to produce the floating-point quo-
tient.

The operands are first loaded into two registers across
the top of the chip. The exponents are subtricted and the
fraction fields are properly aligrred and masked to the re-
quired precision. The signs of the dividend (A) and the
divisor (B) are examined. A conditional two's complement
negation is performed on each fraction to ensure that A is
positive and B is negative. The B operand propagates down
the chip through an array of shifters and caryr propagate
adders. These circuits develop the first r".r".r *rrltipl", of
the divisor (Bx1 to Bxz). A clock cycle is required to loaa

Exponent
Data Path

Fraction
Data Path

Ffg. 10. The divide chip is notfulty
combinational. lt requircs several
clock cycles to generate the float-
ing-point quotient.



the A operand into the remainder register near the top of
the chip.

After this initial setup phase, the divider is ready to gen-
erate quotient bits. The contents of the remainder register
are driven down the chip through an array of seven carry
propagate adders. These add circuits are actually inter-
leaved between the multiple generator circuits mentioned
above. The divisor multiples are subtracted from the re-
mainder in parallel to create seven new potential remain-
ders. The carryout of each adder is examined to find the
smallest positive remainder. It is driven back up the chip
and clocked into the remainder register. Its position in the
array is encoded into three new quotient bits which shift
into the quotient register. This process is repeated, generat-
ing three quotient bits each clock cycle, until the required
precision is reached. The quotient is normalized and
rounded. The exponent may be incremented if either of
these causes an overflow of the fraction. Exponent overflow
and underflow are signaled with the appropriate constants.

Conclusion
The floating-point chip set provides a powerful (up to

one million operations per secondJ and inexpensive execu-
tion unit for HP computers. The chips may be used as
flexible building blocks in a variety of system architectures.
Key reasons for the success of the implementation are the
density and low power of HP's CMOS-on-sapphire process
and the development of algorithms and circuit designs that
take advantage of the process.
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Comprehensive, Friendly Diagnostics Aid
A-Series Trou bleshooti ng
by Michael T. Winters and John F. Shelton

LAGNOSTICS FOR THE A-SERIES of HP 1000 Com-
puters are characterized by a planned systematic
progression of testing, features designed into the

hardware for diagnostics, and the use of an operator-
oriented diagnostic design language. The progression of
testing starts with a microcoded self-test and continues
through to complete interface testing. The testing is in two
basic sections:
r Self-tesVpretest
I Kernel and interface diagnostics.
The self-tesUpretest combination is executed each time the
system is powered up and checks only enough of the com-
puter to ensure that the boot loading program will execute
properly. The tests are contained in ROMs and are an inte-
gral part of the CPU. These tests are an integrity check.
The kernel and interface diagnostics are an in-depth check
of the basic functions of the CPU, memory, and VO func-
tions including DMA and the interface cards. The kernel
and interface diagnostics run under the diagrrostic control
system, which provides all utilities necessary for diagnostic
loading and execution.

This sequence of testing helps the customer in two ways.
If the computer has a major failure, the self-tesUpretest com-
bination will not allow the computer to run. This provides

a confidence factor for the customer in that a major failure
can be detected before restarting or booting of the system
after power-up. This avoids a possibly dangerous condition
in a process control environment. With the other diagnos-
tics, the customer can identify and fix most failures by
major chip or board replacement.

The goals for development of the diagnostics were:
r User friendliness

E Conversational, including help files
n Simple load and go operation with go/no-go results
tr Completely automatic execution
o No operator intervention except where absolutely

necessary
o No jumper changes required during test execution

I Completeness for service engineers and manufacturing
o Full error reporting for analysis
tr Single-test execution
o Looping for single-test diagnostic and other

diagrrostics
a Unattended loading and looping for oven testing.

Self-TesUPretest
The self-test and the pretest check the basic integrity of

the computer after power comes up, but before restarting
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or booting of a program. The self-test is a microcoded test
performed by the CPU to check the internal registers and
data paths before fetching the first pretest instruction. The
pretest is a software program written in assembly language.
When the pretest is executed, it checks the basic instruction
set, the memory, and each VO chip. If a failure occurs, the
program will stop execution so that booting or restarting
of the system will not occur. The status LEDs are then used
to determine the nature of a failure. If the error is not fatal
and a virtual control panel (console) is present, an error
message is displayed for the operator.

Dlagnostlc Control System
The diagnostic control system (DCS) provides a layered

structure for loading and executing diagnostics. The struc-
ture starts with the basic control module (BCM) and is
added to until a complete executable diagnostic is built
(see Fig. 1J.

The basic control module contains the sections needed
to get started. These include the auto program, format
utilities, console driver, and primary load device driver.
BCM also contains a basic test that is similar to the pretest
and is executed before configuration. This allows simple
tmubleshooting in case the initial failure will not allow
BCM to execute properly. BCM is self-configuring and dis-
plays the system configuration, which includes CPU type,
memory size, and I/O card identification. Also, all revision
levels of programs are displayed for operator verification.

Once configuration is completed, the auto program is
started (if selected), It loads the remaining system modules
and then starts a sequential execution of diagnostics. The
modules are MSGS for extended error messages and help
files, MAPS for memory management, and the DDL in-
terpreter. The auto program is controlled by an auto file
which specifies the programs and diagnostics to be loaded
and executed. This is determined by the current configura-
tion. If desired, the operator can create an auto file tailored
to a system's specific needs.

BCM also contains a linking loader which allows efficient
use of memory. Programs and drivers can be added without
concern for absolute address requirements. The auto pro-

Diagnostic Control System (DCS)

Fig. 1. HP 1000 A-Series diagnostic control and diagnostic
program structure.
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gram calls the linking loader to load the system modules
and then later the relocatable diagnostic modules.

Diagnostic D,eslgn Language
One of the main modules loaded is the diagnostic design

language (DDL) program, which is a BASIClike interpreter.
This makes creation or modification of diagnostics by the
customer easy. The program allows direct I/O instructions,
buffer/data manipulation, and simple branching. Programs
can easily be saved for later use, or added to the auto file
for standard execution.

A debug program is also available which allows access
to the individual relocatable programs for modification.
Debug was created during the development of the diagnos-
tics for use with the relocatable programs. It became a useful
tool for hardware troubleshooting and was added to the
diagnostic package.

One of the advantages of the new system is that indi-
vidual tests can be written in assembler relocatable format
and then called by a DDL program. This has two benefits.
First, writing in assembler allows instruction-by-instruc-
tion control and execution, which is very necessary for
diagnostic applications. Second, DDL allows easy manipu-
lation and control of the tests. The individual tests are not
burdened with message reporting, looping, or operator in-
teraction; these functions are handled by the DDL program.

The question may arise, "Why design a separate system
for diagnostics? Why not use RTE?" There are two main
reasons for not using RTE as the operating system. First,
RTE assumes all hardware is functional when loaded and
executed. Therefore, before any diagnostic execution, the
system may use hardware that is failing and not even allow
execution to start. This applies mainly to the CPU (instruc-
tions, interrupts, time base generator, etc.). Second, diag-
nostics require full control of the system, which cannot be
allowed in RTE. For example, a system reset would cause
all current I/O operations to be aborted. The diagrrostic
control system uses only hardware that has already been
checked by the self-test, pretest, and BCM basic test.

Kernel and Interface Diagnostlcs
The kernel diagnostics consist of the tests required to

check the basic CPU, including the base instructions, the
memory controller and array, the system functions (power-
fail, memory protect, time base generator, etc.), and the VO
master portion of each interface (interrupts, control/flags,
and DMAJ. Each diagnostic contains two parts, the relocat-
able program and the DDL program. The relocatable pro-
gram does the in-depth instruction-by-instruction verifica-
tion. The DDL program controls test execution, error report-
ing and operator interaction. Each diagnostic contains sev-
eral subsections and each can be individually selected and
looped.

When executed by the auto program or a run command,
the diagnostics report only a pass/fail indication. If the
operator selects an individual test for execution and an
error occurs, the complete error message is displayed. The
message contains setup parameters, results, and a pointer
to the location in the relocatable program where the test
was performed.

Interface diagnostics are written only in DDL, because



they are VO related and don't need the instruction-intensive
routines. Each diagnostic contains three sections: system
environment, special setup, and loop to device or special
access. These sections vary depending on the interface. For
the system environment test, the diagnostics are loaded
and executed without any hardware changes. Although
this is not a complete test of the interfaces, it is as complete
a test as possible. For a complete test of an interface, the
diagnostic must be run individually with test hoods and/or
necessary hardware changes. The loop to device test can
in some cases be automatic and in others run separately.
For example, the HP-IB interface diagnostic identifies de-
vices and runs loopback tests where possible.

Virtual Control Panel
The virtual control panel (VCP) is a console-oriented

replacement of a hardware front panel. It provides control
and access to the CPU like a hardware front panel, that is,
it enables the operator to examine or change registers and
memory. It also allows loading of programs and control of
their execution. The interaction with the operator is im-
plemented by a program in ROM which also contains the
pretest and loaders. The program is designed to use the
system console if available and configured. The console
can be local, remote using modems, or connected by a
distributed system link.

Also in ROM are the loaders for the common devices
available. The loaders can be invoked either by command
from the operator or at completion of the pretest by selec-
tion of the start-up switches.

Having the pretest, virtual control panel, and loaders in
ROM and an integral part of the CPU ensures that there is
a means of loading, access, and control of the computer at
a very basic level.

The BCM console and load device drivers use the same
interfaces as the VCP. They also use similar routines. Thus
diagnostics can be loaded and controlled from the same
console, and diagnostics can be controlled from a remote
console the same as from the VCP. This also applies to the
loaders. For example, in a distributed system network, diag-
nostics can be loaded and controlled from a central com-
puter for testing of a remote node without a terminal or
Iocal loading device.

Currently A-Series manufacturing uses the remote capa-
bility. The diagnostics used in the field are the diagnostics
used in manufacturing. The oven testing and test stations
are connected to a central A-Series Computer by a distrib-
uted system. The oven station is connected using the fac-
tory data link interface, which is a multiple-drop system
with 12 test units connected to one central interface. The
test stations are connected by a distributed systems (DS)
interface which is a point-to-point connection. Using a cen-
tral computer means that only one source is used for diag-
nostics, all units are tested the same, the test stations can
use the same diagnostics when troubleshooting, and when
updating is required, only the central system need be up-
dated.

A900 Self-Test
The A90O processor contains the most extensive micro-

coded self-test ever written for an HP 1000. Of the control

store that is reserved for the base instruction set, scientific
instruction set. vector instruction set and self-test, 25o/o is
used by the self-test. Self-test's primary use is as a confi-
dence check every time the computer is powered up. It is
designed to exercise as much of the logic as possible, and
to detect when the processor is not functioning properly.
Because it exercises the processor so thoroughly, it is also
used in manufacturing as a debugging tool, and was used
to help debug the lab prototypes.

As explained above, all A-Series Computers contain a
macrocode (assembly language) self-test that checks the
processor when it is first powered up. Why write a micro-
coded self-test to do the same job? The microcode and
macrocode self-tests test the machine from very different
points of view. The microcode tests the processor at the
level of individual circuits, while the macrocode tests the
processor at a functional level. Each type of test has certain
advantages.

A microcoded test can be extremely thorough and effi-
cient, because microcode has more control over the logic
elements that make up the processor, and because it is
specific to the family member (in this case, the A900). It
can also be very fast. This is partly because microcode can
execute more quickly than macrocode, but mainly because
of the increased efficiency of the test. The A900 microcode
self-test takes less than 0.1 second to test the entire proces-
sor. Another advantage that a microcode test has over a
macrocode test is that a failure in the hardware could pre-
vent macrocode from running at all, while allowing the
microcode to execute well enough to report the failure.

The main limitations of a microcoded test are its size
and its crude output methods. The ,t900 self-test has nine
LEDs available with which to pass information to the out-
side world. It uses these LEDs to signal that there is a failure
somewhere in the processor, and to indicate which board
the failure is probably on. Because of the limited amount
of microcode storage, the test must be as compact as possi-
ble. This limits its complexity. In the A900, fault detection
was considered the primary goal. While fault isolation is
theoretically easier to attain with microcode than with mac-
rocode, space limitations prevented the A900 self-test from
being as thorough in isolating faults as it is in detecting
them. While it attempts to identify which board is causing
the failure, it is only right about 90% of the time.

About 1.5% of the ,{900 processor hardware is devoted
to self-test. The majority of this is made up of status and
control registers. Status registers allow access to internal
signals that would otherwise be difficult to observe, and
control registers allow the self-test to put the processor into
states that would otherwise be difficult or impossible to
reach. Control registers are very useful, for example, in
testing the cache memory, which is normally transparent
to the rest of the processor, or in testing the error detection
and correction chips on the memory controller, which have
their own built-in diagnostic capabilities.

The most useful piece of self-test hardware in the A900
is a timer that generates interrupts at the micromachine
level. This counter generates an interrupt eight cycles after
it is turned on, and freezes certain status registers. This
allows the self-test to examine the state of the machine
when the timeout occurs, and allows it to escape from
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failures that cause microaddressing errors or cause the
machine to hang indefinitely. Combined with the ability
to do a vectored microjump, this timer allows the self-test
to scan all of control store for microcode parity errors, thus
verifying the integrity of the microcode for the entire base
instruction set, scientific instruction set, and vector in-
struction set.

Designing and debugging a self-test presented some
unique challenges. Using a processor to test itself for fail-
ures is a little bit like looking in a mirror to see if your
eyes €ue closed. How can you trust the results of a test if
you are not certain that the processor is working in the
first place? Suppose, for example, that a major failure in
the microaddressing logic causes the self-test to be by-
passed completely on power-up, indicating that the proces-
sor is working perfectly, when in fact it is barely working
at all. This is an extreme example, but there are many
failure modes that can subtly mask either themselves or
other faults if not properly tested.

The general rule to follow when writing a test like this
is that no code that tests one part of the processor can
assume that any other part is working correctly unless the
other part has already been tested (this includes, of course,
the self-test hardware, tooJ. On power-up, however, no-
thing has been tested and nothing can be assumed to work
properly. How do we begin?

On the A900, the microinterrupt timer provides an an-
swer. The timer starts counting on power-up. If it is not
turned off in eight cycles it causes an interrupt, and the
code goes into an in{inite loop. The self-test is aranged so
that if there is a major error in the microaddressing logic,
the self-test will not be able to get to the instruction that
turns the counter off in time. Once we know that the major
pieces of the microaddressing logic are functioning, we can
use the timer in a similar way to test the rest of the micro-
addressing logic to assure that microinstructions can at

least be fetched and executed in the correct order.
Once we can assume that the self-test code will execute

in the proper order, what do we test next? Most tests rely
on comparing some result with an expected value, so the
next thing to test is the portion of the ALU that compares
two values and recognizes a match. Self-test continues in
this manner, each test using only what has already been
shown to be working by previous tests.

After the ,{900 self-test was written, another problem
arose. How do you test a self-test? We wanted to know
with certainty how complete this self-test was, and to cor-
rect any bugs that would let failures slip by. It would be
impossible to simulate all possible failure modes of a pro-
cessor as complex as the Ag00. Our solution was to build
a simple circuit that would allow us to force any single
node (IC pin) in the processor to a logical one or zero.
Then, in a time-consuming and tedious process, each node
was forced to one, then to zero, and the machine was put
through a power-up cycle in each case to see if an error
would be detected. This task took about two engineer-
months to accomplish, but when it was done, the results
allowed us to refine the self-test even further, and to say
with certainty how complete the self-test is. And the re-
sults? 97% of the stuck nodes were detected as error con-
ditions and almost ninety percent of the time the correct
board was indicated as the source of the error.
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for multiple users and large, reentrant programs,

Real-Time Systems
RTE systems are primarily used for the "real-time exe-

cute" environment, This means that these systems are run-
ning application programs that monitor or control some
real-world process. Examples of these applications include
computerized testing, data collection, and communications
concentration. RTE is well suited to these applications,
which require a different kind of system than would be

New Real-Time Executive Supports Large

by Douglas O. Hartman, Steven R. Kusmer, Elizabeth A. Glark, Douglas V. Larson, and Billy Ghu

Programs and Multiple Users

TE-A IS Tlm STANDARD SOFTWARE found on all
HP 1000 A-Series Computer Systems. This includes
the operating system and a large number of utility

programs and libraries. It also includes VC * , an optional
package that extends RTE-A's capabilities to include virtual
code, spooling, and multiple users.

Various versions of RTE, the Real-Time Executive, have
been the operating system for aI HP 1000 Computers. RTE-
A adds major new features to previous systems, including
a modern program development environment and support
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Numberof programs 1
Numberof VO devices 7
Memoryftytes) 12BK
Disc space (bytes) 0
Programsize (bytes) 2K
Programdatasize(bytes) 2K

found in a personal computer or in a timesharing and batch
system.

Real-time systems allow programs to deal directly with
external events, including VO devices and timers. Almost
all real-time systems allow multitasking, which means sev-
eral different programs cooperate to accomplish a job. Real-
time systems must provide these services reliably (meaning
they shouldn't crash) and deterministically fmeaning they
should respond to events in a predictable manner).

About RTE.A
RTE-A covers the whole range of A-Series systems. Some

systems are very small, doing only one thing, while others
are large, with a large number of programs and peripherals.
Systems can be either disc-based or memory-based. The
following table shows the minimum and maximum sizes
for RTE-A systems:

Resource Minimum Maximum

New Program Development Features
Program development includes all aspects of writing,

preparing, and testing programs to accomplish the job at
hand. An A-Series application typically involves a number
of programs that work together. These programs pass infor-
mation by means of files or common data areas. Most appli-
cation programs are written in FORTRAN, Pascal, or
BASIC, but sometimes assembly code or even microcode
is used for sections of a program.

RTE-A has a number of features to make it easy to develop
programs. The features were designed with the application
programmer in mind. The goal was to reduce the amount
of computer expertise needed to use the system, leaving
the programmer more time to develop programs. These
features include a modern file system and a helpful com-
mand interpreter and utilities.

RTE applications programmers become very familiar
with files. There are files for data, files for text, and of
course, a large number of files holding the application pro-
grams themselves. A typical system might have several
thousand files, with a large number of interrelationships
between them.

RTE-A allows the programmer to name files in ways that
reflect their contents. File contents can be identified
through the file name and type extension. For example,
three files that are used to hold an engine test application
miCht be EngineTest.Ftn, EngineTest.Rel, and En-
gineTest.Run. These are the FORTRAN source file, the com-
piled relocatable code, and the executable program files,
respectively.

Groups of files can be further organized by keeping re-
Iated files in directories. RTE-A allows a large number of
directories, so it is easy to keep things organized. If files
can be thought of as things in file cabinets, then directories
can be thought of as drawers full of related files. Directories
can be nested inside other directories, just as shoeboxes
can be nested inside file drawers. Nesting depth is unlim-
ited.

Fig. 1 shows an example of this hierarchical file structure'
In Fig. 1, directories are indicated by rectangular boxes,
while files are in circles. Directory U,S.A. contains all of the
other directories and files. Directory California contains
the files pertaining to California cities. A directory can
contain any number of files, and files can appear in any
directory, even a directory that has subdirectories.

These features take care of organizing files on a single
computer, but what happens when you have a network of
computers? The file you need may be located on some
other computer. RTE-A handles this situation easily by
allowing computers to pass file information back and forth
across the network, without the need for special commands
or utilities.

Here's an example to show how networking operates.
Assume that we have written an application that updates
tables in a master file with data recorded from sensors.
Later we decide to split the job between several computers
to put more computing power where it is needed. In the
RTE-A file system, file names may include computer
names. Thus the application can continue to function even
though the files are now located on different systems, de-
spite the fact that the application was not originally written

255
255

24576K
20200M

7936K
737072K

Users can have a standard configuration, known as a
primary system, or can tailor a system by using a system
generation program. Programs developed for smaller con-
figurations will run unchanged on larger conligurations.

RTE-A does its work using a minimum of system re-
sources. This helps application programs make the most
of A-Series hardware performance. RTE-A rarely requires
more than 7oo/o ol the system's processing power. For pro-
grams doing computation on an 4900, it is common to see
RTE-A overhead of only 0.5%, leaving 99.5% of the CPU
time available for the application. RTE-A can execute al-
most all system service calls in less than one millisecond
of CPU time when it is running on an A900.

The A-Series and RTE-A are compatible with most of
the powerful software already developed for RTE systems,
including compilers, networking, data base management,
and graphics. Newer products address such areas as process
control, quality monitoring, and connection to program-
mable controllers.

Ffg. 1. FIE-A's hierarchical file system consisls of files (cir'
cles) and directories (boxes). Directories can be nested inside
othet directories.
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Fig.2. RTE-A provides a separate environment tor each user.

using networking.
In addition to hierarchical directories and networking,

the RTE-A file system provides other features to help appli-
cations programmers. Some examples are:
r Files are time stamped to indicate when they were

changed, and when they need to be backed up.
r Groups of files can be selected through wild-card selec-

tion, such as all names beginning with F.
r Following an errant purge operation (which removes

files), it is possible to do an unpurge to recover a precious
file.
Long-time RTE users will have spotted a number of new

features, and may be wondering how these fit in with ap-
plications developed for older RTE systems. The answer
is that RTE-A retains compatibility with previous file sys-
tem applications, although the applications may need
changes to take advantage of new features.

Multluser Facility
The multiuser facility of the RTE-A operating system

provides an environment in which many users can simul-
taneously use the system and access the system resources
without interfering with each other. Each user has the ex-
perience of being the only user, and need not be concerned
about the other users on the system (Fig. 2). The RTE-A
multiuser system accomplishes these goals by providing
an environment where users are protected from each other
by user identification, by separate file directories, by the
versatile Command Interpreter (CIJ, by having separate sets
of user programs, and by logical sharing of system processes
(system programs). The multiuser software includes the
Command Interpreter and three other system programs
called Promt, Logon, and Users.

In the RTE-A multiuser environment, each user is re-
quired to log onto the system with a logon name and option-
ally a password (up to 16 characters). The logon function
is to identify and verify users who have authorized access
to the system. For access to the system, a user must have
a configuration file and an entry in the masteraccount file
(Fig. 3). The masteraccount file is a protected system file
containing the names of all users. This file and the users'
configuration files are created by the Users system program
based on information entered by the system manager.

For legal users, the logon process sets up an entry in the
session table for the duration of the logon period. This
session entry describes the resources and the environment
in which the user is allowed to operate. At the end of the
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logon process, the system will run a preselected user inter-
face, generally the Command Interpreter or the user's appli-
cation program. In addition, the multiuser environment
accepts remote programmatic logon requests and can also
operate in a noninteractive session mode in which pro-
grams can run in the background until completion.

If error logging is used, the system is set up with an error
logging file. The logon process will record the name of
every attempted logon. The error log file thus provides
another level of protection for monitoring of system activ-
ities.

The system allows the creation of two levels of users.
Super users are allowed complete access for installing and
upgrading the system. General users are allowed a more
controlled access to the system.

The multiuser environment is easy and flexible to set up
and administer. It can be set up with the services of a
system manager in a very controlled atmosphere where
security and tampering are a major concern. On the other
hand, the system can be set up in a software laboratory
where administration can be maintained by the engineers
without the services of a system manager. Adding, main-
taining, and modifying users for the multiuser system are
efficiently handled by the Users system program.

User Interface
The application programmer's main contact with RTE-A

is through the system Command Interpreter. This is a pro-
gram that manages files, controls when programs run, and
makes the facilities of RTE-A available to the user sitting
at a terminal.

The Command Interpreter (which is called CI) tries to
keep the user's life simple. It has a set of easy-to-use com-
mands for operations such as copying files and running
programs. In most cases the user types the right command
correctly, and CI performs the requested operation, con-
firming it with a message such as "Copying ABC to

Masteraccount
File

User
Configuration

FilePrograms Session Table
in in

Memory System Memory

Flg. 3. For access fo lhe sysfem, a user must have a config-
uration file and an entry in the masteraccount file. The config-
uration file ls used to set up the initial sesslon table entry.



XYZ...OK." In some cases an error occurs, and CI tries to
explain the situation with a message such as "No such file
ABC." The user can then make use of the local editing
features of HP terminals to correct and reenter the line
without retyping a whole command line.

When a command seems mysterious, or when it is not
obvious which command to use, RTE-A provides an "on-
line manual," or help facility, that explains the functions
of the various commands and gives examples of their use.

CI maintains a command stack that allows users to list,
edit, and reissue previous commands. Also, CI may be di-
rected to access a file as the source of commands. When
the command file is exhausted. CI returns to interactive
mode.

Sometimes a user wishes to interrupt CI while it is
executing a command, such as listing a long file. Since CI
is already busy processing the original command, it is not
available to process the interrupting command. Under
these circumstances, the Command Master program (CM)
is invoked. CM is an exact copy of CI which runs at a high
priority and contains the identical command set, but exe-
cutes only one command and exits, When a user strikes a
terminal key and a session is already active, Promt displays
a cM> prompt and schedules CM. In the example of inter-
rupting a long file listing, the break command could be
used to cause CI to stop listing.

Sometimes even the CM program can be busy when a
key is struck. In this case, Promt displays a System> prompt
and schedules the Logon program to process the user's
response. In this special mode, Logon accepts only com-
mands that the operating system itself can process, such
as off, break, and run.

In addition to the Command Interpreter, the user has
approximately thirty utility programs available as a part of
RTE-A, plus other programs available with HP 1000 soft-
ware packages. These programs handle a wide variety of
operations, including file backup and system status report-
ing.

Multiuser lmplementation
There is a single copy of the Promt, Logon, and Command

Master programs in the system. The operations of these

programs are based on program-to-program class VO func-
tions of the RTE-A operating system. Promt is scheduled
when a user interrupts the system from a terminal. Promt
performs a class read on the input and determines whether
to pass it to the Logon program or to the Command Master.
Promt makes its decision by knowing if there is an interac-
tive user on the terminal. If no one is on the terminal,
Promt passes the input to the Logon program for logon
processing. If there is a user on the terminal, Promt knows
that CI is busy and passes the input to CM for execution.
The Logon and CM programs are usually suspended until
they receive a message from Promt. The RTE-A system
wakes up the Logon program or the Command Master when
Promt posts a buffer to be processed. The Promt and Logon
programs contain many features that allow them to know
when to perform multiuser system initialization, user
logon, error detection, error correction, and special han-
dling of the system on certain states and conditions. For
example, if a needed system process is missing from the
system, the Promt program automatically restores a work-
ing copy from the /PROGRAMS directory.

Features of the RTE-A multiuser environment include
automatic logoff of users, noninteractive background pro-
cessing, and remote programmatic logon. A user does not
have to log off explicitly; the multiuser module in the sys-
tem does this automatically. The system knows that the
user has exited by using a program count in the user's
session table. This count is incremented every time a pro-
gram is created for the user. Correspondingly, the count is
decremented when a program is terminated. When the
count reaches zero, indicating that the user has exited from
all programs including CI, the user is logged off.

To leave the terminal while continuing to execute current
programs, a user can exit from the Command Interpreter
into the noninteractive background session mode. This al-
lows the remaining programs to run to completion, yet
frees the terminal for another user. This background session
will be logged off when the program count for the session
is decremented to zero.

Another feature of the RTE-A multiuser facility is pro-
grammatic logon from remote systems. This feature allows
users from other computer nodes to create a session to be
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used by the remote system software. Programmatic logon
operates within Hewlett-Packard's Distributed System Net-
work,

Large Program Support
With RTE-A and VC+, HP 1000 A-Series Computers

support new features that bring the seventeen-year-old HP
1000 architecture up to date. These features include sup-
port for large programs with up to 7.75 megabytes of code,
the ability to load code into memory from disc on demand,
support for reentrant code, and hardware support for pro-
cedure recursion that is up to six times faster than before.

The enhancement that makes all of this possible is called
CDS, or code and data separation. A part of VC+, CDS
consists of a little hardware and a little microcode. In the
case of the 4600, a new CPU board is required which con-
tains new hardware and microcode. With the 4700, only
new microcode is required. In the ,{900, CDS is standard,
and is implemented by a cache board and microcode. In
all of the frocessors, a new set of virtual-control-panel
PROMs is required. This new hardware supports a handful
of new instructions and new interpretations of standard
HP 1000 instructions.

The major effort in making CDS work, however, was in
the operating system, languages, and system utilities. This
enhancement to the architecture required changes in any
software that has implicit knowledge of the hardware. The
FORTRAN 77 and Pascal compilers are a good example,
because they must generate code that makes use of CDS
capabilities. The WH status-displaying program also must
know about CDS, because it displays information such as
the current code address of an executing program. The
LINK program has to know how take the output of compil-
ers and assemblers and create a program file.

The biggest software changes are in the operating system,
which has to know how to save the state of a CDS program,
how to dispatch a program that has both disc-resident and
memory-resident components, how to react when a code
segment fault occurs, and how to interpret the new proce-
dure-calling convention defined by CDS.

In spite of all of these changes, the system is designed
so that RTE-A can be offered without CDS capabilities, so
customers without CDS-supporting hardware can still use
RTE-A. This keeps the entry cost for RTT-A low. A customer
only pays for CDS hardware and software when it is needed.

Stack lmplementatlon
Traditionally, progr{rms on the HP 1000 have stored all

their code and all their data statically within the 6+K-byte
address space allowed. This implies that each subroutine
that is in memory must have space for all of its variables
in memory also. This limited address space means that
only a few (usually less than 200) subroutines can reside
in memory at the same time.

Part of the solution is to give the HP 1000 the ability to
manipulate stack frames. This is accomplished by design-
ing into the machine a Q-register which contains the ad-
dress of the current stack frame, and insbuctions to take
advantage of this register (see Fig. 4).

A stack frame is an area of memory used by a subroutine
for the storage of local variables. This area is allocated upon
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Fig. 5. CDS allows many code segments to be mapped into
the code partition. On demand, a code segment is loaded
from the disc into a code block in memory. When the number
of code segments exceeds the number of code blocks, re-
placement of the oldest block may occur.

entry to a procedure, and released when the procedure is
exited. The advantage of this scheme is that only proce-
dures that are currently active need to have memory space
allocated to them.

With this enhancement, when an address in the range 2
to 1023 is accessed, that access instead goes to the location
Q+ address. For example, if Q is 15000, and an attempt is
made to access location 56, the actual location accessed is
15056.

Gode and Data Separation
Another part of the solution to the problem of inadequate

address space is solved by placing the code and the data
into two separate address spaces. This was accomplished
by carefully examining the instruction set and modifying
those instructions that refer to either code or data. Instruc-
tions that refer to data (e.g., LDA) now access the data seg-
ment and those that refer to code (e.g., fMp) use the code
segment. Each segment is an address space that can be
logically mapped with one set of dynamic mapping system
[DMS) maps. Thus separation is accomplished by using
separate DMS maps for code and data.

Although separating code and data immediately doubles
the available address space, the mainbenefit is that it effec-
tively multiplies it many times. Once code and data are
separated, the only subroutine that needs to be mapped in
is the currently active one. This means that a program can
have many more procedures than will fit into one segment
by having many segments, each with a number of sub-
routines. Of course, a method had to be developed to allow
a subroutine in one segment to call a subroutine in another
segment and return. This is done by the PCAL instructions
described later in this article.

As a result of these features, the effective limit on a
program is that the active procedures (or more accurately,
the sum of the local space used by the active procedures)
must fit into the address space left for the stack in the data
segment (Fig.  J. In other words, the limit is not code, but
data.

Ir
Data

Partition



Compatibility of CDS Code
An important goal of these enhancements was to allow

a large degree of compatibility with previous HP 1000s.
This was achieved in a variety of ways.

First, programs that would run under the earlier version
of RTE-A (RTE-A.1) will also run under the latest RTE-A.
This is compatibility at the relocatable level. The program
must merely be linked to run on the new system. Such a
program cannot, of course, use the new CDS features.

Another level of compatibility is at the source level. Pro-
grams written in FORTRAN can be recompiled using the
CDS option of the FORTRAN compiler, and it will output
CDS relocatable code, which can now be linked and run.
One drawback is that CDS and non-CDS FORTRAN pro-
grams use different storage classes for local variables (i.e.,
stack for CDS and static for non-CDS). Although this
shouldn't make a difference, programs that rely on nonstan-
dard features may not work as they did before conversion.
Assembly programs must be converted manually for CDS
mode.

One more level of compatibility is the fact that CDS and
non-CDS code can coexist in the same program, This
means, for example, that a program can be converted with-
out necessarily converting all the libraries it calls. The
major restriction here is that non-CDS code is not allowed
to call CDS code.

The linker for the system will automatically segment a
program for the user, thus freeing the programmer from
having to think about where subroutines lie in memory.
Options exist to control the loading order if desired.

Code Segment Mapping
The CDS scheme supports both memory- and disc-resi-

dent code segments. This flexibility allows users to balance
program memory requirements with program performance
requirements. For situations where performance is critical,
all code segments may be memory-resident. Where perfor-
mance is less important or available memory is limited,
code segments may be disc-resident with a limited number
of segments occupying memory at any time.

Under RTE-A, a CDS program requires two memory par-
titions, one for code segments and one for data. The parti-
tions are allocated independently from available memory.
The code partition is divided into code blocks, equal sub-
divisions of sufficient size to contain the program's largest
code segment (Fig. 5). The number of code blocks deter-
mines the number of code segments that may be concur-
rently memory-resident. Once a program begins execution,
the number of code blocks may not be changed. Also in-
cluded in the code partition is one page (2K bytes) that
contains CDS data structures, This page is used by the
operating system and the microcode.

When a CDS program is scheduled for execution, the
memory manager allocates the necessary partitions. The
code segment containing the start point of the program, as
specified by the linker, is loaded from disc into the first
code block. Code segments are not loaded from disc into
any remaining code blocks, since it is not known which
code segment(s) will be referenced.

As the program executes, it will call a procedure located
in a different segment. The PCAL microcode, reading the

system tables, determines if the referenced code segment
is currently memory-resident. If so, the microcode alters
the program's mapping registers to describe the called seg-
ment rather than the calling segment. When the called
routine completes, the EXIT microcode restores the map-
ping registers.

If the referenced code segment is not currently memory-
resident, the microcode invokes the code segment fault
handler. The fault handler is part of the operating system,
and is entered by an interrupt generated by the microcode.
The fault handler determines if an unused code block is
available to contain the referenced code segment. If it is,
the segment is loaded from disc into the block. The pcaL

instruction that initially caused the segment fault is reex-
ecuted, and this time the microcode simply maps in the
called segment. A similar action takes place when the EXIT
instruction is executed.

In cases where the number of code segments exceeds the
number of code blocks in the partition, the fault handler
uses a round-robin algorithm to manage the code blocks.
That is, the least-recentlyJoaded code segment is overlaid
with the new code segment. There are several exceptions,
however. Code segments may be marked as memory-
locked, meaning that they are not candidates for replace-
ment. Also, whenever possible, the calling segment is not
overlaid with the called segment, since upon procedure
EXIT the calling segment will be needed.

The PCAL that caused the fault cannot be reexecuted if
the calling code segment has been replaced by the called
segment. This situation arises if the code partition contains
only one code block, or if memory-locked code segments
occupy all the code blocks. Since the microcode cannot be
reinvoked to accomplish the PCAL, the PCAL function is
then performed by the segment fault handler after the called
code segment has been loaded from disc.
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New Software Increases Capabilities of
Logic Timing Analyzer
An upgraded operating software package increases the
capabilities of an already powertd timing analyzer sysfem
to include sfatisfics, marked events, postprocessrng, and
storage of captured trace data.

by David L. Neuder

EING ABLE TO UPGRADE the operating software
of an instrument aids in keeping a produ"ct in the
forefront of a competitive market. The addition of

new software features should be considered whenever they
can make a significant contribution to the instrument. In
examining the timing analyzer market, it was clear that
there were some functions needed that traditional logic
analyzers could not perform. This was the impetus for pur-
suing an increased feature set for the HP 646005 Logic
Timing Analyzer, a subsystem used in HP's 64000 Logic
Development System.l

The new features are primarily associated with process-
ing captured trace data for specific conditions, and then
either calculating statistics or altering analyzer operation
based on the conditions found. These features allow results
to be determined more rapidly by providing more process-
ing power to the user, and subsequently reducing the
number of command operations and the amount of data
manipulation required to determine a result. These features
are all implemented through software changes only. There
are no changes to the existing hardware and consequently,
these features can be added at a minimal cost to the owner
of an HP 646005.

To review, the HP 646005 Timing Analyzer is an instru-
ment system dedicated to the primary task of tracing signal
flow on eight to sixteen channels simultaneously.2 This is
accomplished by asynchronously sampling the input chan-
nels at selected speeds between 2 Hz and 400 MHz and
producing a timing diagram as output. A main feature is
precise sampling of data channels with respect to time (low
skew between channels), which allows a high degree of
resolution of displayed waveforms. This allows signal re-
lationships such as edges, levels, and sequences to be
examined in fine detail.

What Users Wanted
Ideas for new timing analysis features came from market-

ing research, from analysis of competitive analyzer prod-
ucts, and most important, from the users of the 646005.
One enhancement suggested was the ability to find a
specified event in trace memory. Users reported that scroll-
ing the screen to locate a particular event visually was a
time-consuming process; they suggested that the analyzer's
microprocessor be put to work to find the specified events.
Users also requested an automatic time interval function.
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They wanted to make a series of measurements of the du-
ration of a pulse or the time between two edges of two
signals. Discussion about simplifying the sequence of steps
and commands for time interval measurement led to an
idea of automatically marking the time interval by assigning
events (patterns with transition or duration qualifications)
to each of the 64600S's existing interval cursors or marks.
These events would be found after each execution of the
analyzer and the appropriate interval would be marked
and measured. Then, in addition to accumulating a series
of measurements for the interval, a statistical package could
be added to determine the maximum, minimum, mean,
and standard deviation of the interval values. Other users
requested a halt for the automatic interval measurement
whenever an interval exceeds or is less than a specified
value so that the conditions associated with the out-of-
specification interval could be studied.

Another feature users wanted was a count of the number
of pulses between specified start and stop points on a tim-
ing trace. The 64600S's x and o markers could be used for
the start and stop points and a new mark added to be
located on each occurrence of a specified event. Thus, each
occurrence 6f the rising edge of a pulse could be marked.
Then the number of marks or pulses could be displayed
and accumulated into statistics for a series of runs. The
ability to halt the measurements if the number of counted

Fig. 1. Timing diagram display for finding the rising edge of
a sional labeled cLoCK.



events exceeds or is less than some value could then be
used to study out-of-specification counts.

It was found that users also need to convert an asynchro-
nous timing trace list of captured state flow into a
pseudosynchronous listing of the actual state flow. A de-
sired result would be a listing of the state flow and the
relative time between states without the duplicate and
transition samples associated with asynchronous sam-
pling. One approach takes advantage of the fact that most
state machines have a clock associated with the data. The
idea is to probe both data and clock lines with a timing
analyzer and produce a trace. The trace is then presented
by storing only one sample for each transition of the desig-
nated clock. This stored sample is some specified number
of samples away from the clock transition to ensure that
the proper setup time of the clock is met. The result is a
listing of clocked states. Of course, the sampling rate of
the timing analyzer must be high enough to ensure that
the input channel designated as the clock is sampled in
both its high and low states. A second approach to produc-
ing state flow assumes that each state exists for some min-
imal amount of time. Then, by storing one sample for each
state that lasts longer than this minimal time, a trace list
can be produced that removes duplicate and transition sam-
ples, leaving only the state flow and the relative time be-
tween states.

Storing measurement data for later analysis would give
the user the ability to store measurements at one site (test
site) and do the analysis of the stored measurements at

another site (home site). This idea led to the concept of
visually comparing two stored measurements or comparing
a stored measurement to a current measurement on the
same screen at the same time.

After considering these and other user needs, an updated
software package for the 646005 was developed. The new
features provided by this package include:
I Finding specified events in the data acquisition memory
r Automatic marking of specified events in data acquisi-

tion memory
I Calculating statistics on marked events
r Using marked events to qualify execution rerun
r Processing asynchronous trace list data into pseudosyn-

chronous state listings
r Storing measurement data along with the system config-

uration
r Visually comparing stored and current measurements.

Bulldlng on Earlier Commands
Adding the new features to the existing 646005 software

while still retaining the simplicity and ease of use of this
timing analyzer was a major design goal. This goal was
achievable because the commands in the original version
of the 646005 software allow for later expansion. For exam-
ple, the keyword find was implemented in the original ver-
sion and the new find features were implemented by ex-
panding the syntax for this command. The original
keyword performed a subset of the most recent version's
functions, including finding the trigger, which was always

Flg.2. Flowchart of the softvvare matking operction
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associated with sample zero, or finding a mark, which was
always associated with some sample number. Hence, when
the new feature of finding an event in the associated trace
memory was to be implemented, the find softkey was al-
ready present and clearly conveyed the meaning of this
new feature.

To make the new software features easy to understand,
the new command sequences closely parallel earlier com-
mands. As an example, consider the trigger command which
allows the analyzer to be triggered on transitions into pat-
terns and on durations of patterns. When we implemented
the new find commands, we used the trigger command syn-
tax to describe an event. Thus, the find syntax is identical
to the trigger syntax, and can be easily understood by users
accustomed to the earlier 646005 software (see Table I).

Finding Events
This new feature allows the 646005 to search its trace

memory for user-specified events. The find command is
similar to the trigger command in that it allows the user to
identify transitions into specified states, durations of
specified states, and glitches on specified channels. The
find software searches the trace memory for the specified
event, and when it is found, positions the display so that
the event is centered on the display. If the specified event
is not found, the message Pattern not found appears and the
display does not change. The find software searches for-
ward and/or backward from the cursor as directed by the
user until it locates the next occurrence of the specified
event or the end of the search range is encountered. Fig. 1
shows the result of finding the rising edge of cLocx through
the use of the command find entering CLOCK: t. Observe that
the cursor is now located at the sample where the condition
is found and that this sample number is noted in the mes-
sage Pattern found on sample *0159.

Automatic Marking
The most common use for any timing analyzer, besides

examining signal functionality, is to measure the time in-
tervals between specified events. The standard approach
to measuring time intervals is to position marks or cursors
at the endpoints of the interval to be measured, and then
read from the display the listed time between the marks.
This is possible because the internal sampling rate of the
analyzer is stable and known and the number of samples

Table I

Tilgger and Find Command Syntax

trigger on (transition_or_level,duration) (LABEL) = (PATTERN)
find (transition-or-level_duration) (LABEL):(PATTERN)

(transition-or_Ievel_duration) :
entering
leaving
any_glitch on (LABEL) with
greater_than (TIME) (time_unit)_of
Iess_than (TIME) (time_unit) of

nsec
psec
msec

between the marks can be counted. The positioning of the
marks typically involves scrolling the display screen to
each of the desired endpoints and placing each mark at
the specified point via a command sequence.

The new 646005 command mark on-first-occurrence- of exe-
cutes finding and marking in one step. In addition, this
new command will initiate an automatic search for the
desired condition after every execution and mark the trace
data accordingly. As an example, consider entering the
commands listed below.

mark x on_first_occurrence_of entering CLOCK : 1 after trigger

mark o on-first-occurrence-of entering CLOCK : 1 after mark-x

execute

execute

Display shows: Timex-o 265.onsec
Display shows: Timex-o 270.0 nsec

After each execution. the 64600S's x and o marks are as-
signed as specified in the above definition, the time interval
is automatically calculated, and the display shows the
value.

Marking timing data is an operation in which specified
conditions are searched for in the acquired timing trace
data. The found conditions are then labeled with the appro-
priate labels (x, o, a, b, c, and d in the 646005 Timing
AnalyzerJ to indicate to the user where these conditions
were found.

Marking occurs after the timing analyzer has completed
an execution and the execution has filled a trace memory
with data. The marking operation begins with the unload-
ing of all trace memory data into a RAM area. This unload-
ing into RAM enables fastermarkingby allowingthe system
microprocessor faster access to the trace data. Next, the
mark searching routine is initialized. Each mark has as-
sociated with it four variables that must be set to appro-
priate values for the searching routine to find the specified
marK. First, GREATER-THAN-COUNT and LESS-THAN-
COUNT must be initialized to the appropriate values as
shown in Table II to match the specified mark condition.
Second, PATTERN_FOUND_CoUNT must be set to zero. This
variable indicates the number of times the specified pattern
is found. Third, the MARK-PATTERN for each mark must be
determined. This is the pattern of ones, zeros, and don't
cares to be found.

After mark initialization, a loop is entered in which each
trace memory sample is sequentially compared with each
MARK-PATTEnN to determine if the corresponding mark can
be found. The flowchart of the marking operation is shown
in Fig. 2. This routine is called once for each mark for each
sample of pmvony_oATA for a total of 6 x 4060 times
(6 x 8140 times in fast sample mode). This is where the
tests are made to determine not only if NGMoRY_DATA
matches MARK_PATTEnN, but also if the conditional qual-
ifiers {entering, leaving, etcJ of the specified mark are met.
These qualifiers are specified by the two variables
GREATER_THAN_COUNT and LESS_THAN_ COITNT according
to their values in Table II.

After the entire trace memory is searched for marked
events and the appropriate mark locations are stored, the
time interval is calculated by determining the number of
samples between the marks x and o and multiplying the
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number by the sample period. Finally, the trace data, the
marked locations, and the time interval are displayed.

Statistlcs
The time interval measurements can now be accumu-

lated for statistical evaluation of the interval. Following
each execution (acquiring data, automatic marking, time
interval calculation, and trace display), a maximum,
minimum, mean, and standard deviation of the specified
interval are computed and displayed. This capability is
useful in circuit characterization. It allows the user to ob-
tain a "feel" for the stability of a time interval such as setup
and hold times, pulse width variations, interrupt-to-ac-
knowledge response times, and propagation delays.

As an example, consider a case of characterizing a circuit,
where it is desirable to measure the propagation delay be-
tween two signals called clocr and q_our (CLocK always
occurs before QOLII). Now we can set up the appropriate
marking to occur by entering the commands: markx on-first-
occlurence- of entering CLOCK : 1 after trigger, and mark o on-
first-occurrence-of entering Q-OUT : 1 after mark-x. We can turn
on the statistics capability with the command indicate time-
interval-x-o mean-and-standard-deviation. The trigger is set on
the rising edge of Q-IN by the command trigger on entering
qIN : 1. Then, by executing the analyzer repetitively using
the command execute repetitively, the statistics can be calcu-
lated. Typical results for this type of measurement after
100 runs are shown in Table III.

One problem encountered during the design of the new
64600S software involved calculating statistics on a series
of runs. The desired performance was to calculate statistics
on as many runs as possible, as fast as possible, with a
factor of ten increase in accuracy (i.e., mean accuroc! :
sample period/lO) with no counter overflow. Originally,
32-bit integer arithmetic was selected as the method for
doing the statistics, because the routines already existed
and had the necessary speed. And, the increase in accuracy
could be simply obtained by multiplying all values by a
factor of ten before calculations and dividing the results
by ten. But, with 32-bit arithmetic, the accumulators could
possibly overflow after 77 runs. Further investigation
showed that only a few 48-bit routines would be required
to allow the accumulation of run statistics for up to 1000
runs. Thus, specialized 48-bit addition, subtraction, mul-
tiplication, and division routines were developed. To deter-
mine standard deviation, a 32-bit integer square root
routine was developed. Thus, the statistical package for
the 646005 fits the requirements of high-speed, accuracy,
and the ability to accumulate statistics for up to 1000 runs
of data.

Statistics can improve the measured accuracy when
measuring repetitive and stable waveforms.3 The accuracy
of a timing analyzer can be defined by the equation: accu-
racy : + (sample period + worst-case cross-pod channel-
to-channel skew). When an interval is measured a number
of times (N) and the sampling period of the analyzer is not
a multiple of the period of the input interval to be measured,
this equation can be rewritten to take into account the
multiple runs, that is, accuracy : -r(sample period/Vlrtr +
channel-to-channel skew). This equation reflects the accu-
racv of the measured mean of the interval after N measure-

Table ll

Marking Gondition Variable Values

Qualifler GREATER-THAX-COUNT LESS-THAN-COUNT

Entering 1
Leaving 10000

Greater-than Duration in sanples + I

Less-than 10000

Any-glitch 7

0
10000

0
Duation in samples

0

ments. As an example, consider measuring a stable interval
of approximately 2 ps with a sampling period of 25 ns and
a skew of 3 ns. After one execution and measurement of
the interval, the accuracy it -+(25 ns + 3 ns) : + 26 ttt.
Now, by measuring the interval 100 times, the accuracy
becomes +(25 ns/V100 * 3 ns) : I 5.5 ns.

Marked Events
At times it is convenient to mark each occurrence of a

specified event to make it easier to locate and count the
events. In addition to marking a time interval automati-
cally, the new software for the 646005 provides the capa-
bility of marking four distinct kinds of events a multiple
number of times, up to a total of 511 marks. An example
of the usefulness of this capability might be marking the
condition of the status lines entering a particular state.
Using the following commands, we can produce the timing
diagram shown in Fig. 3a with each of four microprocessor
states marked (vertical bars).

mark a on-all-occurrences-of entering S0:1 and 51:0 and IO_M:0

named Mem_write

mark b on-all-occurrences-of entering S0:0 and S1:1 and IO_M:0

named Mern-read

mark c on-all-occurrences-of entering SO:1 and 51:1 and IO_M:0

named Op_fetch

mark d on_all_occurrences_of greater_than 20 nsec-of SO=t and

S1:1 and IO-M:I named Int_ack

By invoking another new 646005 command, process-for_

data marked, only marked samples are displayed for a more

readable trace list (Fig. 3b). In Fig. 3b, time count rel indicates

the time between the marked samples, a feature useful for
determining the time between processor states and observ-
ing the processor flow.

Table lll

Typical Statlstical Time Interval Results

Dlsplay Output
Time x_o 45.0 nsec

Maximum 55.0nsec

Minimum 40.0nsec

Mean 42.5 nsec

Stdv 4.0nsec

Runs 100

Comment

100th time interval of x to o
Maximum interval over 100 runs
Minimum interval over 100 runs
Average interval after 100 runs
Standard deviation aboutthe mean
Number of runs and intervals counted
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Captured Data Storage
and Retrieval

In implementing the new software features of the HP 646005
Timing Analyzer, we were faced with a number of critical software
concerns. One key concern was the ability to display a wavetorm
from stored data. Because the input hardware of the analyzer
could not be reloaded with the previously captured data, and
since we did not have sufficient RAM available to store the mea-
surement, it became apparent that the stored data would have
to reside externally on a hard or f lexible disc. Various data storage
approaches were studied, but an approach that makes the data
look similar to the input data was finally selected. This struc-
ture is basically a serial channel{o-channel format, which al-
though not ideally suited for decoding into a trace list, is ideal
for timing diagram display and disc space utilization. The format
stores 16 channels of data, 256 words per channel, 16 data
points per word, where the least-significant bit is the earliest data
and the most-significant bit is the latest data. The deslred format
for the trace list, however, is an array of 4096 samples, 16 bits
per sample, one bit per channel, where the least-significant bit
is channel 0 data and the most-signif icant bit is channel 15 data.

One problem in reading the data from the drsc memory was
that each time the user scrolled the display screen, the disc
would have to be accessed for more data. This was resolved by
unloading enough data to allow the user to scroll through three
pages of timing diagram and five pages of trace list before
another disc access is required. When more data is required,
another three to five pages of information is unloaded with the
current display page being the center page.

Another key issue was to find/mark a specified event in a timing
diagram or trace list as quickly as possible using either data
acquisltion memory or stored data. In finding such an event, a
search occurs sample by sample in a serial fashion across all
channels. Normally, this would seem to be an easy process. But,
since the timing analyzer data is stored on a channel-by-channel
basis as outlined above, the data of a given sample on one
channel must be combined with the data from the same sample
across al l  other channels. This bui lding of a 16-bit  word to rep-
resent the data across all 16 channels is a bit-manipulation pro-
cess which is slowed by the required channel-controlled access
to data acquisition memory. Initial estimates of building this word
4096 times (as would be required in a total memory search) were
on the order of 1.5 s. This amount of time included no associated
overhead, but it was felt that the maximum time constraint of
about 3.0 s to find/mark specified events would be met.

However, another concern arose. Since the stored measure-
ments were kepl on the disc also in a channel-by-channel format,
it would be even more difficult and slow to build a sample word
across al l  16 channels direct ly from the disc, because each
channel record would have to be read once to extract each
sample word--a total of 4096 times. This process was never
attempted. Hence, it was apparent that the disc data would have
to be unloaded into processor RAM before the sample words
were built and the search for events could occur. But again,
RAM space was at a premium and 4K of space just did not exist.
The solution was to designate another overlay (see box on page
38) to the find and marking process. This overlay returns to the
main display overlay the locations of the specified events or
lound events. In this designated overlay, there exists plenty of
room to unload the data completely from the disc storage and
subsequently bui ld the sample words. In addit ion, by using this
overlay structure and unloading data acquisition memory before
building a sample word, it was found that 4096 samples could
be bui l t  in about 200 ms, a signit icant improvement over 1.5 s!

Qualifying Data
Timing analyzers incorporate a fairly extensive set of

triggering capabilities for examining circuit characteristics,
but they are inherently limited in certain triggering capabil-
ities such as occurrence counting, sequential triggering,
and duration triggering with resolution dependent on the
sample period. One approach to expand triggering capabil-
ities is through processing the captured data with internal
software to search for trigger-like conditions. These condi-
tions qualify the current captured databy inhibitingfurther
collection of data. The 646005 can qualify the captured
data in four ways to determine if another execution is to
occur. These qualification procedures include duration
qualify, count qualify, sequence qualify, and run number
qualify.

Duration qualify halts repetitive execution when a time
interval marked by x and o is greater than or less than a
specified amount. Count qualify operates in a similar man-
ner, except that the number of marks between x and o is
counted and compared with a qualify number. When the
count is greater than or less than the reference number
specified, the execution of the analyzer is halted. Sequence
qualify searches for a sequence of up to four marks between
the x and o marks, and halts execution when the sequence
is found. A typical sequence qualify command might be
halt_repetitive-execution when-sequence-x-o-is mark-a then mark-
b then-not mark-c. This halts the repetitive execution when
the sequence is found anywhere between mark x and mark
o. Remember that the time, count, and sequence qualifica-
tion occurs after the trace data is captured and the analyzer
is paused (not acquiring data). Therefore, if a specified
event occurs while the analyzer is paused, the analyzer
cannot respond to that stimulus. But when the analyzer is
started again, it will again be capable of storing the stimulus
and again be able to search for the halt condition.

Postprocessing Data
A timing analyzer typically presents data in the form of

a timing diagram. An alternative display method is a trace
list. Newer analyzers can have trace lists of more than 4K
samples of data. Isolating information from a list of more
than 4K samples can be a difficult task. Therefore, the new
646005 software adds a series of new commands to reduce
the amount of data presented and at the same time, retain
and make clearer the significant information. These new
commands allow the user to observe marked samples, state
flow, and clocked state flow after every execution.

The new command process-for-data greater-than (rnrln) (time-
unit) presents only one sample for each sequence of samples
with the same data that exceeds a specified time duration.
As an example, consider t}re process of trying to look at a
high-speed 7-bit-wide data channel labeled DATA running
at 40 MHz. Assume that the signals on DATA are stable for
at least 20 ns (the signals take 5 ns to change states). In
this example we will set up the timing analyzer to sample
every 5 ns (200 MHz) by entering the command sample
period-is 5 nsec. Fig. 4a is a typical listing after the analyzer
executes and before postprocessing. Now, by entering the
command process-for-data greater-than 10 nsec on DATA, the

trace list is processed into a more readable form showing
each DATA state as shown in Fig. 4b. Note that only one
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Fig. 3, Uslng the commands given in the text, a timing diagram marking four microprocessor
sfates can be displayed (a). Using the new display_for_data marked command, a trace list of only

the marked samp/es can be displayed (b).

sample of each state is shown and that the relative time
between these samples is also displayed.

Another new command, process-for-data sampled (SAMPLES)
samples-(bef ore-after) (pos-neg-transition)-on (lannl), reduces the
data in the trace list by only storing one sample for each
transition on a specified channel. With this command, the
user selects one of the asynchronously captured inputs as
a clock. A clock edge and a number of samples before or
after the clock are specified. This allows the user to specify
a setup time that matches the characteristics of the data
under test. The analyzer then processes the clock signal
for the specified transition and enters the specified sample
in the trace list. As an example, again consider the 7-bit-
wide high-speed oara channel. Assume that the channel
has a signal sYNC that changes polarity with each valid
DATA. Now, if we assume that DATA was valid for at least
6.5 ns before the positive or negative edge of sYNC and at
least 1.5 ns after the same transition, we could set up a
command process-for-data sampled 1 samples-before pos-or-neg-

transition-on SYNC. Note that we are again assuming the same
sampling period (5 ns) as the previous example. The trace
list of Fig. 4a will then be processed to produce the trace
list shown in Fig. 4c. The timing analyzer has stored each
sample that occurs one sample before the positive or nega-
tive transition on the SYNC line.

Determining the maximum usable data rate of this feature
places requirements on the signals that constitute the data
and the clock. The clock must be sampled once high and
once low, and therefore, must be present for at least one
sample period plus the skew on a single channel (5 ns *
1.5 ns = 6.5 ns for both high and low levels). This gives a
minimum clock period of 13 ns (maximum clock rate of
77 MHz) when sampling the data at 200 MHz. To sample
the data accurately one sample before the clock, it must be
present for a minimum of 8.0 ns. This results from a setup
time equal to one sample period plus skew, and a hold
time equal to skew (5 ns + 1.5 ns * 1.5 ns : B ns). There-
fore, with a minimum clock period of 13 ns and a minimum
required stable data time of B ns, the maximum effective
sampling rate is 77 MHz with 5 ns available for the data
to change. For a sixteen-channel timing analyzer with a
worst-case skew of 3 ns (cross-pod channel-to-channel
skew), the above analysis yieldsTT MHz with 2 ns available
to change data or 50 MHz with 9 ns available to change data.

Storing Data and System Gonfiguration
Earlier analyzers could store the current setup, but rarely

could they store the captured data. The 646005 Timing
Analyzer now allows the user to store both the current
configuration and the captured data in a file for later

Fig. a. @) Trace list of high-speed data channel before postprocessrng. (b) Trace list of (a)
processed for data greater than 10 ns on the DATA |ines. (c) Trace list of (a) processed for

data one sample before a positive or negative transition on Sy/vC.
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Overlay Memory Structure

The HP 646005 Timing Analyzer has a processor RAM space
of approximately 22K words, but the code to run the analyzer is
approximately 95K words. Therefore, an overlay structure is used
with a resident portion of code of 6K words and an overlay area
of 16K words. The resident code contains the data structures
that define the analyzer configuration, the utility routines used
by all overlays, and the routines that control the overlay loading
and execution. Typically, each overlay was partitioned to corre-
spond with each display mode of the timing analyzer, where all
the commands associated with a particular display mode are
immediate in response (no additional overlays must be called to
execute the command). With the addition of the new marking
function, this is no longer true. Because not enough processor
RAM space was available to unload the data acquisition memory
or stored data, a separate overlay is needed just for the marking
function. Thus, whenever a mark command is executed or the
newly acquired data is to be marked, the current display overlay
is swapped out and the mark overlay is placed in processor
RAM. When marking is finished, the swapped-out display overlay
is reinstalled and if required, the display is then updated.

One problem which had to be solved during the swapping of
overlays occurred while a user was executing a measurement
in repetitive mode where marking was requested. ln this mode,
a user would still like to be able to enter commands even though
the code that responds to the commands is swapped out 50%
of the time. Problems arose in that the command line would be
initialized each time the display overlay was swapped back in.
This made it difficult to execute even simple commands. The
problem was solved by modifying the structure of the overlays
so that '1) all variables of the display overlay are in high portions
of memory so that marking overlay does not interfere, and 2)
modifying the nature of the overlay swapping such that the call
to the marking overlay is like a call to a procedure and corre-
spondingly, the return to the display overlay is directly after the
call. This leaves all the current variables of the display overlay
untouched by the marking overlay. Therefore, any command that
a user enters while the display overlay is swapped out is left
intact. This gives the user the impression that the command
response is a little slower because of the code swapping, but
other than that, everything appears normal.

analysis. Further, this data is stored in such a way that
when the analyzer is reloaded, the data can be processed
as if the user had never left the analyzer or the analyzer
had never been turned off. In short, the full analysis capa-
bilities of the find, mark, process, and display commands
are available to be used on the stored data. The command
configuration load-from (rn r) reloads the configuration and
the associated data. Advantages of this capability include
being able to process data captured at a remote site and to
document data and analysis, and the convenience of being
able to analyze a measurement later.

An additional and important advantage of being able to
store data is that it can be retrieved and displayed concur-
rently with freshly captured data. This allows a stored cor-
rect waveform to be placed on the screen and compared
with a currently captured suspect waveform. The required
sequence of commands to set up this feature are listed
below, assuming that the file FILE contains a configuration
that is similar to the current analyzer configuration and
that FILE also contains stored data.

compare-file-is (rnr)
display (display-item) then (display-item) t}en........

(disPraY-item) 
:::lt:f"-,,," (LABEL)

Note that to display stored data concurrently with newly
captured data, the trace specifications must agree in some
aspects-mode, trigger position, and sample period. The
user can completely specify the ordering of the data in both
the timing diagram and the trace list. A typical command
might be display SYNC then compare-file SYNC then DATA.0 then
compare_file DATA .O then DATA.1 then compare file DATA.1 then
DATA.2 then compare file-DATA.2. This command produces a
timing diagram as shown in Fig. 5. Note that the character
x follows each of the labels that come from the specified
compare file. Also note how the traces can be visually
compared to find differences. All processing commands
work in reference to the currently captured data and will
only process the compare file to the extent that the same
sample number that is processed in the current data will
be processed in the compare file. This can be useful in
comparing state flow of one trace with state flow of another,
if both were captured with the same trigger.
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